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Anthony Menicucci 

B.S., Applied Mathematics 

Ph.D., Engineering 

 

Abstract 

Solar Insolation Micro-Forecasts (SIMF) are used by Independent Service Operators 

(ISOs) and other grid operators to maintain constant and stable electrical grid 

frequency, voltage, power factor and waveform across their transmission 

infrastructure.  Intermittent, thick, dense and typically cumulus clouds negatively 

impact the electrical grid by quickly turning on and off power production from large 

solar photovoltaic (PV) fields, causing grid stability problems between generation and 

load.  Forecasting insolation values over large PV fields allows operators the chance 

to anticipate and proactively implement mitigation strategies like engaging spinning 
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reserve from gas turbines, deploying generators, buying power in the spot market, 

and or engaging grid tied battery/energy storage.   

This research has built and fielded a deployable SIMF system.  We utilized new 

sensors to alter the way clouds are imaged.  We also employed a machine learning 

code (AI) called LAPART, that learns and generates five-minute accurate predictions 

of PV insolation values based on the specific spatial configuration of individual fields. 
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1. Thesis Motivation and Background of the 

Engineering Task 

Imagine a world where the generation of electricity production is split between two 

choices, power production with solar panels or power production with a large gas-

turbine.  Figure 1-1 highlights this scenario.  

 

Figure 1-1. Dilemma highlighted between using an intermittent PV solar generation resource 
and reliable fossil fuel resources for power generation. 

While trying to maximize the clean and free-fuel (after it’s built) solar photovoltaics 

(PV) resource, the choice of generation on cloudy and sunny days is straight forward.  

On cloudy days utilize the gas turbine and on sunny days utilize the PV.  But what 

does one do when the day is partly cloudy/sunny?  In operation, a more complex 

energy generation situation occurs.  Loads must meet with the correct amount of 
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electricity throughout the day as electricity use varies.  Gas turbines and energy 

storage is employed to match these specific energy fluctuations.  Frequency, voltage 

and reactive power must be kept in correct specification or the utility will become 

liable for damages to the consumer.  In all scenarios the question is highlighted: 

‘Would it be helpful to have a prediction of when partially cloudy PV solar turns on 

or off, so the power company can tun on or off their gas turbines?’  The thesis and 

motivation for solar irradiance microforecasts (SIMF) is an exploration of the 

benefits of answering “yes” to the previous question. 

Though the previous scenario presented a binary situation for power production, real 

life decisions about power generation resources are very similar when considering 

solar PV.  In practical use, gas turbines only need to ramp up or down power 

production and not turn completely on or off.  Though consumer [1] and regulatory 

pressures continue to make photovoltaic solar an increasingly attractive option for 

power generation companies to meet their renewable energy portfolio standards, [2] 

this increase in PV generation is not without problems and cost.  Because most 

current and new PV system installations produce intermittent power when clouds are 

present, it is increasingly harder to stabilize power on the grid during intermittently 

cloudy days.  This is because most PV sites do not incorporate costly grid-connected 

energy storage solutions.   

The intermittencies of power production are ranked among the most important 

challenges facing an aging electrical grid.  The Edison Electric Institute, a large 
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corporate representative of U.S. investor-owned electric companies notes; “Recent 

technological and economic changes are expected to challenge and transform the electric utility 

industry.  These changes (or “disruptive challenges”) arise due to a convergence of factors, including: 

falling costs of distributed generation and other Distributed Energy Resources (DER).” [3]  In 

combination with an ageing infrastructure [4] and a shortage of trained engineers in 

the power field, [5] cloud occlusion problems which cause PV power intermittencies, 

will continue to be a major source of technical problem for grid operators. 

1.1. General Power Transmission and Distribution 

Requirements 

Small scale PV farms, on the order of 0.5 to 2 MW are scalable, moderately cost-

effective and easy to install. [6]  However, these small-scale PV installations pose the 

greatest challenge in mitigating power intermittencies.  This is due to their relative 

compact size and centralized location. [6]  Currently, grid-scale power intermittencies 

from PV farms are manageable without SIMF because there is a low percentage of 

solar PV as a total of all generation sources. [7]  However, geographic locations like 

Hawaii where solar is a large part of the total energy consumption, would greatly 

benefit from PV SIMF as a means to smooth power input and out to the grid [8], [9].   

Wind energy also suffers from the same intermittency problem.  However, strategies 

for mitigating intermittent power transmission from wind include the ability to 

attenuate output of the wind mill via altering the blade angle [10], [11] as is shown in 

Figure 1-2.  To accomplish this in synch with the electrical grid, wind energy also has 
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a variety of forecasting abilities ranging form numerical weather predictions [12] to 

utilizing LIDAR [13] for forecasting future wind intensity. 

 

Figure 1-2. Wind blade attenuation process [14]. 

Wind energy can provide a quasi-energy storage function [15], [16] by forecasting day 

ahead minimum wind output and then change the blade angle on the day of 

generation, to match the minimum wind forecasted the day before. [17], [18], [19]  

Wind energy can be considered a reliable and stable power source with this blade 

smoothing process.  If there is too much wind blowing at any given hour, the blade 

pitch will be altered, and electricity production lowered.  In all cases, the minimum 

forecast power output must be met because market incentive exists to punish the 

wind farm for not supplying the minimum contracted day-ahead electricity.   
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There is an opportunity cost from the underutilization of the wind resources.  From a 

market standpoint, it is more economically feasible to attenuate the wind generation 

resource and waste the opportunity to produce excess power then it is to produce an 

intermittent resource. [20] 

Whether the intermittent resource is wind or solar, power fluctuations are nothing 

new to the industry.  The constant mismatch between a varying consumer load and 

power supplied from the grid, ensures that daily energy production will not remain 

constant.  Figure 1-3 shows the electricity demand in gigawatts for New England over 

the course of one day on 10/22/2010. 

 

Figure 1-3. Electricity Demand for New England versus time of day [21]. 

This fluctuation in demand must be matched by an appropriate fluctuation of supply 

(up or down) to ensure that voltage, frequency and power factor remain within 

specification.  Throughout the day, electricity must be generated by peaking power 

plants.  Typically, “peakers” are natural gas turbines, which turn on and off or vary 
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output to meet any shortages/overages in electricity. [22], [23]  “Peaking” power 

plants are specific to a fast acting temporal range and are different from coal or 

nuclear power plants that can take from one day to months to turn on and off. [24]  

A cross section of a fast acting gas turbine peaker is shown in Figure 1-1.  A generic 

stacked version of the daily load curve [25] highlights when peaking generation 

occurs and is shown in Figure 1-4.   

 

Figure 1-4. Stacked Load curve for power consumption throughout the day [25]. 

Sometimes peaking plants operate for only a few minutes per day based on the 

electrical need of an area.   

Peakers can also assist in demand regulation up or down when the turbines are 

operating as “spinning reserve”.  Spinning reserve is a process where the gas turbine 

peaker is spinning at a minimum power.  In spinning reserve turbines can act very 

fast (one minute) to power fluctuations and assist in grid stability operations referred 

to in Figure 1-4 as “Regulation”.  These power instabilities are sometimes caused by 
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intermittent cloud occlusion of PV farms, but they can also be caused by a variety of 

other sources like a factory or warehouse starting or stopping daily operations, among 

others. 

The allocation of generation resources is referred to as “unit commitment”.  Unit 

commitment allocation with the integration of SIMF has been shown to greatly 

reduce the wear and tear on peaking equipment in the field, as well as grid scale 

battery storage systems [26], [6], [27].  

To better illustrate a unit commitment scenario, observe the many different 

generation resources realized for a simulated grid operation scenario during Phase 2 

of the Western Wind and Solar Integration Study (WWSIS-2) [28]. 

 

Figure 1-5. Five-minute dispatch stacks. High Solar Scenarios for a week in March in the 
Western Wind and Solar Integration Study (WWSIS-2) [28]. 

Note that in this scenario coal generation fluctuates in its electricity output, but it 

never turned off completely. [29], [30]  However, nuclear cannot and does not change 
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its output at all.  If too much electricity is on the grid, the power company could 

dump power, but such a curtailment scenario would be a last resort grid stabilization 

method.  Unlike wind curtailment, if the coal fired power plants do not ramp up or 

down their electricity output fast enough, the power company may end up wasting 

electricity.  This would be done by dumping power into energy sinks until the grid 

can accept the full coal unit-allocation at the grid-stable energy requirement.  In this 

scenario, gas generation is the fastest response to power fluctuations both up and 

down, but the resource is limited to the number of installed units. 

Because coal and nuclear do not respond very fast to fluctuations in output 

generation, they are considered base-load generators and only rarely fluctuate in 

power production.  Dumping power is also a rare phenomenon as gas peakers are 

most likely to be curtailed first.  Before wasting electricity, the spot market prices is 

likely to reduce and/or go negative to prevent such extreme scenarios.  In the case of 

wind turbines, the underlying lost resource is free wind that blows over the earth.  In 

the case of coal or nuclear, the lost resource is non-renewable.  Coal and nuclear are 

also the most likely to be integrated with pumped hydropower storage as shown in 

Figure 2-8.  However, coal and nuclear energy is too slow to integrate with SIMF.  

Instead, fast acting resources like energy storage and gas spinning reserve are better 

suited for SIMF. 

Peaker plants are not exclusively natural gas powered but natural gas does provide a 

fast and cheap form of on-demand electricity.  Unlike all other resources, natural gas 
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peaker plants can turn completely on and off multiple time throughout the day.  This 

unit commitment scenario in Figure 1-5 illustrates the complexity of the number of 

generation resources that can be called upon to respond to power fluctuations on the 

grid.  Natural gas turbines, diesel generators and grid tied battery storage are all power 

resources that integrate well with SIMF, as stated above.  

Lastly, one should note a whole array of other so-called energy storage devices like 

vacuum sealed flywheels and compressed air energy storage.  Though these novel 

ideas may have been hypothetically tested, companies in the past trying to implement 

such technologies have gone bankrupt.  One notable example is Beacon Power’s 

bankruptcy in 2011. [31]  Beacon Power was a company that tried to make a flywheel 

energy storage solution.  The scope of this dissertation and analysis is limited to 

installed and proven, legacy technology.  It does not include analyzing hypothetical 

and unproven technologies. 

1.2. Fast Acting Power Fluctuations 

Power fluctuation events range from seconds to hours.  Solar Irradiance 

Microforecasts (SIMF) operate to mitigate fast acting power fluctuations on the order 

of 1 to 10 minutes.  On longer time frames, satellite imagery and weather forecasts 

are preferred methods for power generation predictions of PV farms.  Ground based 

methods are investigated in this research as a means to increase the accuracy of SIMF 

predictions. 
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Though power fluctuations are not new to the industry, the rate at which electricity 

can fluctuate is new and presents a growing problem.  These instabilities will only 

increase with further installations of intermittent resources [32].  To better illustrate 

these temporally fast acting power variations, one needs only to look at the output 

from a solar field on a cloudy day.  Shown in the figure below, is the irradiance 

profile for November 26th, 2011 for the Mechanical Engineering building at the 

University of New Mexico in Albuquerque.  This irradiance would be directly 

proportional to the amount of power produced by a PV field on its roof. 

 

Figure 1-6. Irradiance levels with Intermittent Clouds Passing Overhead from the University 
of New Mexico in Albuquerque. 

A close observation of time stamps 3:05pm to 3:08pm indicates that the irradiance 

level went from approximately 200 W/m2 to around to 900 W/m2.  This fluctuation 

would equate to a solar farm producing 20%, and then ramping up to about 90% of 

full capacity in two minutes.  The time that the ramp in electricity takes to affect the 

power grid is proportional to the size of the array and the velocity of the clouds.  For 
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example, a small field can turn on and off quickly because the cloud occludes the field 

very fast.  In larger fields with clouds moving at the same velocity, it would take 

longer for the field to completely turn off due to the large geographical region that it 

occupies.  If power quality in the form of voltage, frequency and/or reactive power 

reaching the customer is outside of the bounds of the regulatory requirements, the 

power company will be held liable for damages independent of the source of the 

poor-quality power.  This motivates a power quality correction on the part of the 

power supplier to help mitigate PV cloud occlusion events, among other phenomena 

that cause bad power quality.  With SIMF, this correction can be obtained in a more 

cost-effective manner as this general principle applies; ‘When bad things will happen, 

it is always better to know what’s coming as opposed to dealing with it once it gets 

here.’  An example of this principle is the reduction of battery wear and tear that 

occurs on battery storage with the pairing of SIMF and PV [6]. 

1.3. Legal Implications of Poor Power Quality 

Even when the load is being met with enough supply, long transmission distances 

and other effects can lead to out of specification power quality.  In general, these 

issues fall into one of three categories, voltage issues, frequency issues and power 

factor issues.  These problems must be corrected before power can be delivered to 

the customer. 

There are no nationwide standards for power quality limits, but there are agencies 

that write proposed standards for which different regulators have adopted for use.  It 
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should be noted, most power quality standards are applied by state and or regional 

regulators.  The most widely adopted standard is NEMA-C84.1 (National Electrical 

Manufactures Association) [33].  The figure below shows the standard limits set for 

normal, suboptimal and unacceptable power quality delivered as 110-120VAC service. 

 

Figure 1-7. NEMA-ANSI C84.1 Voltage Ranges.  Acceptable ranges of voltage for power 
supply to customers are shown within the bounds of the white box [34]. 

NEMA-C84.1 specifies limits on the upper and lower customer supplied voltages and 

frequencies among other power requirements.  This standard is adopted by many 

regulatory agencies and is enforced through a variety of coercive means in the form 

of fines.  In rare cases like the Enron scandal that became public in 2001, jail 

sentences for executives can also occur for nefarious actors that purposefully cause 

power production issues.  Active power management is required by the customers 

who demand a constant voltage and frequency.  This is important because incorrect 

voltages, frequencies and power factors may damage ratepayer electrically powered 
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products.  Correct specification voltages, frequencies and power factors are also 

mandated by law.  Because of legacy power production technology, laws do not make 

provisions for the source of the distortion [35].  From the law’s standpoint, power 

companies are the only liable entity for power instabilities, even if the instability 

originates from an independent source, including other customers. 

Since power companies are regulated to provide in-specification power, they have a 

vested interest to mitigate these problems as fast as possible.  With the introduction 

of more solar without energy storage, mitigating complex power problems will 

require a more proactive approach rather than the current reactive mitigation 

strategies.  SIMF can help to mitigate PV intermittencies so power companies can 

meet their power delivery requirements in specification and without negative legal 

consequences. 

1.4. Legal Implications of Poor Quality Infrastructure 

If power quality cannot be meet, or the power cannot be deliverd reliably, sometimes 

the power company may blackout an area.  This blackout operation is occuring in 

record numbers by California’s veriacaly intergrated power company Pacific Gas and 

Electric (PG&E).  The Wall Stree Journal, utilzing the Freedom of Infortmation Act 

has revealed that PG&E revealed that at least 49 steel utility towers and their 

aluminum transmission lines needed immediate upgrade or replacement [36].  In 2018 

a transmission line, now known as the Caribou-Palermo line, sparked a campfire in 

northern California that eventually killed 85 people.  This was one of nearly 1,500 
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fires that have occurred between 2014 and 2018 [37] and was a direct result of poor 

maintenance.  Consequently, PG&E is in litigation as a result of its failures to execute 

proper fiduciary obligations to its customers. 

The fires that occurred are almost exclusivly due to “wind damage” [38].  This 

happens when the wind blows power lines into vegitation and creates fires.  The 

solution that PG&E has implemented is widespread preemptive blackouts in 

northern California when windy conditions occur [39].  This provides its own 

problems when the power is turned back on, because every mile of transmission and 

distribution line must first be inspected for safety, including wildfire potential. 

With an aging infrastructure, especially in California, reliable power will become more 

essential.  As more intermittent solar power is being introduced to the power grid, 

especially in California, it will be crucial to have SIMF technology integrated with PV 

and energy storage devices.   

1.5. Financial Markets in Power Purchase and Power 

Quality 

Legal implications may provide a means for monetary compensation of the consumer 

from damages due to out-of-specification power quality.  Monetary incentives exist 

through power-purchase markets to maintain in-specification power quality also.  

Before one can elaborate on the implications of financial purchase of power on the 

wholesale market, a summary of power markets is necessary. 
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Power markets are broken into three entities that generate, transmit and then deliver 

through distributed transmission, power within the acceptable power quality limits.  

These three entities are referred to as Generation, Transmission and Distribution.  

When one entity owns two or three of the three parts, the utility is considered 

vertically integrated and are typically regulated more like a monopoly than an 

independent resource.  With each entity, temporally based markets have formed and 

manifest themselves in three markets called Prime Power contracts, Day-Ahead 

Markets and Real-Time Spot Markets.  All power company entities engage in both 

selling and buying of power in both the Day-Ahead and Spot market also known as 

the Real-Time market.  As the name implies, the Day-Ahead markets are for the 

purchase and sale of electricity to be consumed in the next day for a certain period.  

This day-ahead transaction enables all entities involved to transact power contracts at 

a discounted rate.  This discounted rate is due to advanced planning of supply and 

demand which increases efficiency of the power grid.  The Spot-market is for 

purchase of electricity that will be consumed very shortly (from a few minutes to 

immediate delivery) after purchase.  Because of the need for immediate power, Spot-

market prices are typically higher for consumers.  Spot market power delivery is 

harder to deliver for producers and requires greater dispatch reliability.   

With this problem in mind, a new system of settlement was designed to preserve real 

time incentives, by maximizing planning.  In short, if the exact amount of power 

required day ahead (DA) is purchased in the DA market, no additional money 
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transacts.  However, if less or more electricity is bought or consumed, respectively, 

then the supplier must pay the higher real-time spot-market price.   

Take for example a supplier (generation) that sells Q1 amount of power in the Day-

Ahead market at price P1.  If the amount of power delivered is Q1 on the contracted 

day ahead, then nothing about the transaction changes.  However, an example from 

Power Economics [40] highlights what happens if the contract is not settled, either 

partially or in whole.   

If none of the contracted power is delivered the contract is void and legal 

mechanisms exist to deal with that scenario.  However, what if only a partial deliver 

of power was completed?  In this scenario of a partial fulfillment of the day ahead 

power, the contract is treated as if the power purchased is split between what was 

delivered and what was contracted and billed in two different installments with a two-

settlement system. 

For example, a contract exists to deliver a quantity of Q1 power at price P1, both in 

the day -ahead (DA) market.  The if the supplier fails to deliver some power at the 

time and day, they said they would.  Consequently, the supplier needs to be punished 

monetarily, but still paid P1 for Q1 delivered.  The difference in power delivered from 

what was contracted is Q0.  The current real time price is defined as P0.  The supplier 

will then be paid a two-settlement payment highlighted in (1-1). 

𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖𝑠 𝑝𝑎𝑖𝑑: 𝑄1 ∗ 𝑃1 + (𝑄0 − 𝑄1) ∗ 𝑃0 (1-1) 
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Rearranging the terms reveals the supplier is shown to be paid: 

𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖𝑠 𝑝𝑎𝑖𝑑: 𝑄1 ∗ (𝑃1 − 𝑃0) + 𝑄0 ∗ 𝑃0 

 

(1-2) 

(1-2) reveals the price discrepancy of P1 – P0 at the day ahead delivery quantity.  

Because the DA price is almost always cheaper than the spot-market price, the 

incentive structure reveals the optimum operation of any grid requires optimum load 

forecasting.   

For DA markets trying to mitigate problems with PV intermittencies, a weather 

forecast of cloud cover for the day ahead is most useful [41].  Historical load curves 

by day of year also help predict day-ahead power usage [42].  These forecasts always 

have too much error to be useful to mitigate PV cloud occlusion induced instabilities.  

Cloud occlusion intermittencies are mitigated in the spot-market.  Cloudy day PV 

power production can be mitigated in the DA market at the hourly level, with a 

forecast of the percentage of sky cloud cover vs hour.   

1.6. New Market Potentials for Solar Microforecasts 

The commercial price of electricity is bought and sold in two different markets, the 

Spot and Day-Ahead market.  Where residential customers are more likely to pay a 

set price for electricity based on net metering or the total amount of electricity used 

over the day, commercial customers usually have price incentives that vary based on 

the time of day and/or daily maximum usage for the month.  To illustrate this, 



18 
 

observe that the commercial price of electricity for the New York Independent 

System Operator shown in Figure 1-8, varies throughout the day.   

 

Figure 1-8. Price fluctuation illustration for the Real Time market, for one gas generator in 
N.Y.C., located in downtown Manhattan on 74th street [43]. 

Since there is small demand at night, the need for additional electricity generation 

resources is nearly zero, as is reflected in the price.  Figure 1-8 illustrates the price for 

one generator for spot market operations in New York.   

Bloomberg reported that the Eastern Reliability Council of Texas (ERCOT) had 

declared a Level 1 emergency on 8/13/2019 at 13:25 ET.  A Level 1 trigger is called 

when operating reserves fall below 2,300 MW and they are not expected to recover 

within 30 minutes.  When this level is reached, it allows the grid operators to 

purchase any and all available power supplies, including power from other grids.  

Since ERCOT operates on its own independent 60 cycle phase, power purchases 
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from another grid are technologically complex and expensive.  Note in Figure 1-9, 

that the spot price shows about 6,850 $/MWh, but the intra-period bid topped 9,000 

$/MWh [44]. 

 

Figure 1-9, ERCOT spot market real power price as reproduced from Bloomberg on August 
12th, 2019 [44]. 

SIMF can help with these price fluctuations by providing independent service 

operators with a forecast of short-term generation potential.  With SIMF, PV farms 

once considered an intermittent resource, can now be considered for use with firm 

power commitments in the Spot market as supply.  In combination with future 

knowledge of a PV farms that are about to go offline from SIMF, grid operators can 

proactively adjust their spot market price to match their ability to fulfill the contract. 
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1.6.1. Ancillary Services Market Potentials 

Ancillary services to the power grid include but are not limited to voltage control and 

power regulation [21], [45].  Regulation and voltage control is the injection of mostly 

real (in Watts plus a power Factor) and some purely reactive power (in volt-ampere 

reactive) respectively, onto or off of the grid.  Spot-markets exist for both reactive 

and real power, though many of the transactions are automated and must comply 

with Control Performance Standards specified by the North American Electricity 

Reliability Council (NERC).  These integrated systems must react by both absorbing 

or injecting the specified contracted power at the contracted price, within seconds.   

To illustrate the need for reactive power, an example of such demand is illustrated in 

Figure 1-10 to be meet via a grid connected battery and modern power electronics.   

 

Figure 1-10. Voltage Support services example throughout the week as reproduced from 
EPRI [25].  Note that the battery/power electronics combination provides reactive power 

while both charging and discharging. 

In this scenario, a grid connected battery is supplying reactive and real power mid 

Monday.  On Tuesday it is charging on real while simultaneously supplying reactive 

power to the grid.  The economic value of reactive power support has been 
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quantified.  In addition, frequency and power factor are among other variables that 

modern PV inverters can also supply [46].  The California independent service 

operator (CAISO) has highlighted multiple fields with these new inverters.  During 

excess energy production times and utilizing flexible inverters, they will often curtail 

real power from PV farms by as much as 60% of normal and instead utilize their 

inverters for frequency support [47]. 

Until recently, regulatory laws dictated that power electronics can only support 

adding real power to the grid, despite power electronics being able to provide other 

support.  Two key takeaways remain that provide SIMF as an enabling technology for 

the utilization of PV fields for ancillary power services. 

1. The modern-day power electronics that provide reactive power when 

connected to a grid sized battery, are that same technology as those that are 

utilized when connected to a PV farm.  Thus, utilization of PV inverters for 

reactive power support would only be limited by the reliability of the PV 

farm’s output and not the technology.  The technology exists for PV inverters 

to provide ancillary power services, but legacy regulatory laws prevent it. 

2. SIMF would increase the reliability of many PV installation thus enabling their 

use for ancillary services in the power market.   
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1.6.2. Regulatory Problems Preventing the Full Utilization of 

PV During Outages 

The technology exists to provide voltage support at a PCC (Point of Common 

Coupling) but interconnection standards of distributed resources that the power 

companies must abide by often prevent such full utilization [48]. One such standard 

is the IEEE Std 1547-2003.  It is the standard for interconnecting inverters with 

electric power systems.  Whereas ANSI C84.1 governs customer supplied voltage 

limits, IEEE Std 1547-2003 governs the acceptable behavior of inverters with the rest 

of the power grid. 

One such limiting regulation is found in section 8.1.1 Voltage Regulation.  “The DR 

[(Distributed Resource)] shall not actively regulate the voltage at the PCC.  The DR shall not cause 

the Area EPS service voltage at other Local EPSs to go outside the requirements of ANSI C84.1-

1995, Range A.” [49], [50]  As a result, inverter companies cannot and do not produce 

inverters for PV panels that could provide reactive power.  A separate discussion of 

islanding and an explanation of the logic of IEEE Std 1547-2003 is highlighted 

below. 

As intermittent generation sources like PV become more popular, the ancillary 

services market will become increasingly more important, thus raising the prices of 

such services.  With the price of intermittent generation resources progressing lower, 

these services may be a way for PV installations to further stabilize the grid and 

increase their profits. 
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Often, whether it is intentional or not, the impression of a PV system is to offer 

independence form the power company and the implication is that the system 

functions, specifically when the grid fails.  New standards have prevented such an 

emergency utilization, often to the detriment of the customer.  In operation, due to 

mis-matched regulation, power outages affect grid connected PV homes in the same 

way as non-PV homes.  The rational for this regulation was so that PV panels do not 

energize a circuit and electrocute and electrician when the power was disconnected 

from the grid.  Where a market could exist for SIMF at the residential level, 

regulatory inflexibility is one hurdle that must first be overcome.  SIMF could 

integrate well at the residential level utilizing the new inverter technology already 

deployed in the wholesale market but the residential regulations would have to 

change first. 

In what is one of the more ironic situations pertaining to the mismatch between 

perceived use of solar PV panels, functional use in the field and regulatory hurdles 

affecting consumer sentiment, is the article by Bloomberg Energy highlighted in 

Figure 1-11 below. [51]  It was published at the time of this writing, and it highlights 

regulatory problems Californian PV rooftop owners are currently facing in the light 

of rolling blackouts. 
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Figure 1-11. Bloomberg Energy article highlighting the need for batteries for solar PV to 
work in a power outage [51]. 

Bloomberg [51] explicitly states that batteries are required when the power grid is 

non-operational for a home or business to maintain internal power.  What they 

convey though, is a sense of disappointment that a resource designed to make free 

and clean power, cannot functionally make any power, unless connected to an 

unstable power grid. 

This is another example regulatory inflexibility that is preventing a market for SIMF 

technology.  In the case of a residential house with PV and battery storage that is 

disconnected from the power grid, SIMF would increase battery life by reducing the 

rate of charging and discharging associated with intermittent overhead clouds.  A few 

takeaways are highlighted below. 
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1. By California mandating PV installations on all new residential construction, 

this causes more grid instabilities.   

2. In order to help with these instabilities, California should have employed one 

of two mitigation strategies. 

a. Mandate PV connected residential storage, where the storage can react 

in real time to the power fluctuations caused by intermittent clouds.  In 

combination with a grid disconnect, this scenario could provide backup 

power during a blackout. 

b. Incentivize PV connected storage by making the renewable energy 

rebate a real time rate proportional to the spot market and inversely 

proportional to the power put back onto the grid.  If this were the case, 

the renewable rebates would incentivize smoothing from the storage 

battery by offering greater rates from reduced power fluctuations. 

In all scenarios above, the common theme exists that greater power fluctuations are 

contributors to grid instabilities.  By mandating residential solar without an energy 

storage mechanism, California is making their electric grid more unstable.  If energy 

storage was incentivized or mandated, a new larger market would exist for SIMF 

technology, to both stabilize the grid and increase the life of the storage units.  If 

residential customers wanted to install enough storage, they would also have the 

added benefit of backup power during power outages.  They would also be able to 

participate in arbitrage opportunities when real time prices are high enough.  
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2. Microgrids, Smart Grids and a Changing Power 

Infrastructure Model; Current State of the Art 

In recent years a new phenomenon of non-centralized power generation has emerged 

[52], [53], [54], [55].  While until recently a single centralized power generation station 

used to supply all power to a region, recent advances in PV technology as well as 

smaller industrial diesel and gas generators have given rise to the concept of a 

Microgrid with attached Distributed Generation (DG). [56]  Figure 2-1 highlights this 

concept of a separate area on the grid that has both loads and supplies of electricity 

connected with a point of common coupling (PCC).   

 

Figure 2-1. Microgrid figure from EPRI [53] highlighting multiple Distributed Generation 
Sources. 

The region is collectively known as a microgrid region and the generation resources 

are called distributed because they are not a central power plant.  A discussion of this 
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new concept of power infrastructure and the problems and advantages associated 

with it follows.   

2.1. Current Electrical Infrastructure 

Imagine a world in which all roads were designed to accept the maximum amount of 

traffic possible all the time.  This is equivalent to the current electrical Infrastructure.  

The size of the wire needed to transmit electricity is directly proportional to the 

amount of maximum electricity needed at any given time [57], [58]. However, now 

imagine that cars can simply be generated at their destination.  The number of 

highway roads needed would be far less.  In this example, the expensive roads are like 

the expensive transmission lines. 

 

Figure 2-2. Electrical infrastructure diagram from EPRI [53] highlighting the pieces of the 
power delivery system. 

With the assistance of Distributed Generation, the power does not have be 

transmitted long distances.  As is shown in Figure 2-2, cost savings are realized 
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through decreased infrastructure need, mainly transmission and step up/down 

transformers.   

One of the advantages of having an electrical grid is utilizing the grid to providing a 

battery like function for the customer.  The grid can act as both a source and sink of 

electricity.  Obviously, the electricity grid is not infinite, but is can absorb and 

discharge in a battery like function.  This is advantageous for intermittent resources 

like PV.  However, as the percentage of electricity generation from PV increases, 

which is the case for most microgrids, SIMFs will be increasingly important in 

stabilizing microgrids and the larger grid in general.   

To better illustrate this point, PV generation on the entire grid is approximately 1.7% 

of total generation [59].  If 1.7% of the electricity were to disappear on the grid, 

voltages would drop by an average of 1.7%.  If grid voltages are in the middle of the 

NEMA-ANSI C84.1 voltage range, then the new reduced voltage would still be in 

specification and in general, no mitigation strategy would be required.  This extremely 

small percentage of PV production relative to grid size is not usually realized in a 

microgrid scenario.  As microgrids increase around the country, SIMF will play a 

larger part in ensuring loads are balanced with supply and battery storage wear and 

tear is minimized. 
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2.2. Electrical Islanding and the Regulatory Responses 

from a Technological Standpoint 

Though most electrical infrastructure models are based on legacy technology, new 

developments are beginning to study the idea of specifically disconnecting particular 

load regions from the grid [60], [61].  This phenomenon is known as “Islanding” and 

it can happen at the grid level and the individual source level [62]. 

Islanding is the energization of one region behind a PCC, Point of Common 

Coupling.  It can occur for many reasons including under or overvoltage scenarios.  

Figure 2-1 highlights a utility scale PCC that incorporates a microgrid.  Figure 2-3, 

shows the Public Service Company of New Mexico’s (PNM) Richmond Switching 

Station as an example of legacy utility scale coupling technology.   
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Figure 2-3. Richmond Switching Station in Albuquerque, NM; similar in function and size to 
a utility scale Point of Common Coupling (PCC). 

PNM’s Richmond switching station only diverts power from different transmission 

lines to different parts of Albuquerque so maintenance can be done on the 

distribution infrastructure [63].  It does not function as a disconnect in the technical 

form of a PCC, but it gives the reader an example of the size of a utility PCC 

interacting with the grid. 

In the case of a residential household with PV, the region that islands is a household 

disconnecting from the grid at a PCC [64], [65].  Figure 2-4 highlights a non-

automated residential PCC in use. 
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Figure 2-4. Point of Common Coupling (PCC) of a Residential PV system.  

In a residence or business with grid connected PV, this presents a scenario when an 

electrician disconnects power from the grid at the PCC, but the PV continues to 

energize the building internally.   

With such safety issues a concern for electricians, federal regulators have adopted an 

extremely conservative stance through the regulation of inverter sales for grid 

connected PV and batteries.  IEEE Std 1547 governs PV to grid connection 

protocols and IEEE Std 2030 governs battery to grid connection protocols [66], [67].  

Both protocols mandate disconnection of any inverter (within seconds) from the grid 

when the grid loses power [68].  This sort of operational mismatch of regulatory 

mandates versus implied intent will have suppressing effects on the implementation 
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of SIMF at the residential level [69].  It should be noted that at the time of the 

implementation of the above-mentioned standards, SIMF technology was not 

developed. 

2.3. Smart Grid Operations with SIMF Integrateable 

Legacy Technology 

A “Smart Grid” is a term that has emerged recently as description of a power grid 

that communicates with both the load as well as generation [70], [71], [72], [73].  In 

most market operations, the power company must react to frequency, voltage and 

reactive power problems.  With smart grids there is a symbiotic relationship between 

load and generation with preexisting contracts that are executed automatically [74] 

[75].  The load and generation resources are actively in contact with each other 

constantly to ensure matched generation with the load. 

The scope of any smart grid operation is extensive and involves a large amount of 

communications infrastructure.  However, the scope of the following analysis is 

limited to operations that integrate well with SIMF and are legacy technologies 

proven in use.  These categories are listed below. 

1. Distributed Generation Dispatch 

2. Grid-Tied Battery Dispatch 

3. Demand Response Operations 
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2.3.1. SIMF Integration with Distributed Generation 

Resources 

Distributed Generation (DG) resources are the first of three SIMF integrable 

technologies.  DG is primarily producer initiated as is highlighted in Figure 2-5. 

 

Figure 2-5. Distributed Generation as the first of three SIMF Integratable Technologies. 

DG is the placement of many generation resources throughout a geographical region.  

These can include gas turbines and diesel generators, but there is an increasing 

amount of solar without storage that is also DG. [76], [77]  Diesel generators that 

produce reliable power, on demand, are the limit of this analysis, as they integrate the 

best with SIMF.  Most commercial DG diesel generators take less 30 seconds to 

ramp up and down to full generation capacity.  Smaller home, and specialty 

commercial generators for uninterruptable power applications can react within 

seconds to provide uninterrupted power through power outages.   
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Two such commercial DG resources that provide voltage regulation for the 

University of New Mexico are shown in Figure 2-6. 

 

Figure 2-6. Distributed Generation Resources at UNM; Left: 150 KVA diesel generator with 
author for scale, located at the Architecture building at UNM; Right: 50 KVA generator at 

Northrop Hall UNM. 

Currently, diesel powered generators like those in Figure 2-6, operate sporadically, on 

the order of a few times per year and possibly only for a few minutes.  This presents a 

scenario where DG is underutilized from a maintenance standpoint. [78], [79]  This 

underutilization is due to maintenance being required on a resource that is not 

needed.  One example is that diesel fuel in DG has a finite lifetime while sitting in a 

storage tank.  If the DG does not utilize the fuel within the fuel’s lifespan, the 

resource must operate to maintain the equipment simply to burn the old fuel and 

replace it with new.   

These fast-acting DG resources have been considered by the Department of Energy 

and Department of Defense to provide firm power in the event of a terrorist attack. 

[80], [81], [82]  The connecting technical specifications that unite SIMF and 

DOE/DOD reliability studies follows: 
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1. DG is often underutilized as a generation resource.  There are known costs 

associated the with normal use of fossil fueled DG.  However, the ongoing 

costs of maintenance, can be utilized to provide an economic value of the 

marginal cost of DG, when the resource is underutilized.  This cost could of 

utilization is less if the resource is already installed. 

2. Fast acting power fluctuation from PV without storage could be mitigated by 

SIMF and DG.  For example, if a PV field is about to lose power due to a 

cloud passing over, SIMF could be integrated with DG to automatically call 

for the DG to supply power to the grid. 

2.3.2. SIMF Integration with Grid-Connected Battery 

Technology 

The second well integrable technology is grid connected battery storage as highlighted 

in Figure 2-7. 
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Figure 2-7. Grid tied battery storage is the second SIMF integrable legacy technology. 

Lead acid and Li-Ion battery technology is fast enough to interact with SIMF to 

provide grid smoothing from PV cloud occlusions [83].  Typical configurations are 

highlighted in Figure 2-8.  The ones highlighted are sold by GS Battery USA [84] and 

NEC Energy Solutions [85], but there are different types and configurations for sale 

by many companies. 
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Figure 2-8. GS Battery USA and NEC Energy Solutions (left); and Genex Power’s Kidston 
Pumped Storage Hydro Project (right) [86]. 

Pumped hydropower is a common energy storage solution employed by nuclear 

power plants for daily load shifting, but it is too slow to integrate with SIMF to 

smooth PV intermittencies.  Such longer-term energy storage solutions are utilized 

for daily load shifting and have proven useful in combination with hour and day-

ahead forecasts [87], [88], [89].  Pumped hydropower storage is one of grid sized 

power-storage legacy technologies with a proven record of reliability and cost-

effectiveness. 

Batteries that operate at partial capacity can both discharge and charge with electricity 

from the grid [90].  This utilization makes them a more valuable resource than one 

that can only generate electricity such as DG [91].  As was highlighted in Figure 1-10, 

partially charged grid tied batteries in combination with modern power electronics, 

can provide ancillary services to the grid by both absorbing and discharging real and 

reactive power [92], [93]. 



38 
 

It is known that battery life and degradation is a function of total lifetime energy 

discharged and charged [92], [6].  Thus, when utilizing batteries for smoothing 

operations the amount of energy delivered or discharged can be lessened by 

utilization of a centered window of PV power output prediction as opposed to a 

trailing window.  A trailing window is equivalent to reacting to a power disturbance 

after you know about it.  A centered window utilizes prediction from SIMF.  The 

following experimental data is from the Prosperity PV site located in Albuquerque, 

New Mexico [94].  Its 500 kW PV field also has a 1.5 MWh total load 

shifting/smoothing batterie attached [95].  The battery is providing smoothing 

operations.  When utilizing a 2-minute SIMF prediction, energy drawn or stored in 

the battery was significantly reduced [6].  The engineering goal in the experimental 

simulation of battery operations, was to set a limit of the rate at which excess 

electricity from variable PV goes onto or off the grid.  Batteries must discharge more 

energy, faster, when no SIMF is available.   

Since all batterie have a lifespan that correlates to the total amount of energy charged 

or discharged over their lifetime, SIMF can greatly increase the lifespan of all grid 

connected batteries.  This leads to longer uptime of grid connected storage for PV 

smoothing, better reliability, a longer overall lifespan and reduced maintenance costs.  

These are all problems that cause many grid-connected storage projects to be too 

expensive.  Reliable SIMF could help with this problem and enable grid connected 

battery storage. 
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2.3.3. SIMF Integration with Demand Response 

The final power mitigation strategy that integrates well with legacy technology is 

Demand Response (DR) events. 

 

Figure 2-9. Automated Demand Response is the third SIMF integrable legacy technology. 

Unlike batteries that charge and discharge, demand response (DR) can only reduce 

loads by momentarily turning off power uses like HVAC compressors or fans.  

Several simulations and experiments have confirmed the feasibility of current HVAC 

building components, among others, for such use [96], [97].  These outages are 

temporary and only last minutes.  To integrate with intermittent PV, DR can only 

reduce customer loads.  When the sun emerges from behind a cloud and begins to 

produce more electricity, a DR event would by definition not be useful. 

The Federal Energy Regulatory Commission (FERC) issued final Order 745, Demand 

Response Compensation in Organized Wholesale Energy Markets that regulates DR 
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compensation in wholesale markets.  This order mandates that any power saved from 

calling of a DR event, must be compensated by the power company to the customer 

at spot-market prices.  These prices are high during a DR event because there is a 

shortage of electricity to be delivered immediately (within a few tens of seconds or 

the supplier is in violation of the contract.   

Sandia National Laboratories recently studied demand response events on their 

campus and concluded; “Due to the recent Federal Energy Regulatory Commission 

(FERC) Order 745, Demand Response Compensation in Organized Wholesale Energy Markets, 

the potential annual compensation to Sandia National Laboratories (SNL) from 

performing DR ranges from $200K to $1,800K” [98].  As stated above, FERC order 

745 ensures that reduction of power during a DR events is compensated at the 

current and higher spot-market rate.  This is also how Sandia calculated its possible 

monetary benefits to reducing its electricity loads during high rate times of the day. 

Though DR is typically integrated with load reductions, SIMF technology in 

combination with DR could be a large untapped market.  In the case of SIMF with 

PV, DR events could be utilized to stabilize the grid during daylight hours, instead of 

only high during high electricity demand hours [97], [99]. 

SIMF integrates well with DR events when coupled with PV.  When a cloud is about 

to pass over a PV field an integrated DR event could be called.  Unlike high electricity 

demand times, which are probably hot and possibly humid thus increasing the latent 

air conditioning electricity load, a cloud occlusion event reduces the air conditioning 
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load.  When clouds occlude an area, there is typically less need for air conditioning 

electrical power due to cooler temperatures and reduced cooling load.  Thus, DR 

events to smooth PV can be longer without affecting the comfort of the building 

occupants.  With spot price fluctuations becoming even more pronounced, this may 

become more significant in the future. 

Current testing and implementation of DR events is in the wholesale market, but 

residential DR in combination with SIMF could be yet another large, untapped and 

newly enabled market.  The major impediment to implementation of DR events in 

the markets in general, is lack of communications infrastructure for real-time prices.   
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3. Literature Review 

Literature reviews of forecasting methods are extensive and encompass multiple 

technologies for multiple prediction time-frames. [100], [41]  Figure 3-1 illustrates 

these three sets of technologies and the time-frame prediction lengths that are 

generally accompany by them.   

 

Figure 3-1. Time frame for three main categories of solar irradiance forecasting techniques 
based on technology category, relative to time horizon of prediction and observation area in 

miles. 

Ground based image systems used photonic based sensors to make prediction of 

irradiance up to 15 minutes into the future.  Sensor networks use a variety of ground-

based sensors to make irradiance predictions of 10 minutes to one hour, based on 

sensor location.  One such example of a sensor in a sensor network would be home 

and business, roof and ground-based PV collector generation capacity as a percentage 
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of maximum output.  Satellite systems are self-explanatory in data acquisition 

function and are useful for one hour or longer irradiance forecasts.  Though this 

literature review focuses on short term forecasting methods of less than 30 minutes, 

some technologies for longer forecasting are also reviewed due to their similarities 

with SIMF.  Some processing and preprocessing methods for SIMF are similar for 

longer term irradiance forecasts. A list of relevant search terms for SIMF and 

irradiance forecasting in general, is listed in Appendix A.  

3.1. Statistical Methods, Machine Learning Algorithms 

and Neural Networks in SIMF Prediction Systems 

For each data input technology, the forecasting technology can be broken down into 

two models, Statistical and Machine Learning models.  Figure 3-2 highlights this 

division of these prediction types. 
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Figure 3-2. Diagram of different types of prediction algorithms used for solar irradiance 
forecasts. 

This review follows the same basic structure. 

3.2. Overview and Definition of Types of Statistical 

Methods and Machine Learning Algorithms as 

Applied to Solar Irradiance Forecasting 

From a mathematical standpoint, the formulation of many statistical models can be 

the same as machine learning models.  However, machine learning models are distinct 

in two specific ways.   

1. As Phani Srikanth, editor of Data Science Analytics puts it; “Statistical learning 

involves forming a hypothesis before we proceed with building a model.  The hypothesis could 



45 
 

involve making certain assumptions which we validate after building the models.” [101]  

He goes on to note the assumptions embedded in, for example, the linear 

regression model.  The three assumptions are: A. All residuals follow a normal 

distribution around the mean.  B. The data follow an independent 

relationship.  C. Lastly, the variance of the residuals for random data is 

constant. (homoscedasticity).  Under the above framework, a linear regression 

model could be constructed.  If the hypothesis was wrong, the model would 

ostensibly, also be wrong.   

However, even machine learning can contain some hypothesis about the data 

structure.  For example, the unsupervised machine learning model K-Means 

Clustering contains an initial hypothesis about how many K categories to look 

for in the data.  Though even in this example, machine learning remains 

different in that there is no hypothesis about where in the data to go about 

looking for these K number of categories.  Indeed, using random initial 

conditions, could lead to different clusters.   

2. The second, distinctive feature of Machine Learning comes in the subcategory 

of Artificial Neural Networks (ANNs).  Whereas Machine Learning that is not 

an ANN, has a hypothesis about network structure but not the mathematical 

formulation; ANNs need not be constrained by such hypothesis.  Obviously, 

the network has rules by which it is governed to work.  However, ANNs can 

extract un-hypothesized features in network layers.  They then can alter 

themselves, both physically in size and spatiotemporally based on those un-
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hypothesized features and/or also other network inputs.  These are examples 

of recursive and adaptive neural networks.   

ANNs are specifically modeled after the neuro synaptic responses in the brains of all 

mammals and many other species [102].  Of course, they contain simplifications in 

operation relative to mammalian brains, but the structure of ANNs is biologically 

inspired.  There are several other distinctive features that ANNs have, but a rigorous 

mathematical derivation of the most common architectures used for SIMF and in 

general analysis are reviewed.   

It should be noted that the simplest ANN could be formulated almost identically to a 

statistical model.  However, machine learning and specifically ANNs shed more and 

more hypotheses about how the model is supposed to work, while still maintaining a 

framework of network actions and interactions.  From a mathematical perspective, 

ANNs could violate the independent variable hypothesis noted for a linear 

regression, by giving two distinct and valid answers to one distinct input variable, 

depending on when and how you query the network.   

In current SIMF research, statistical models are typically used to preprocess or 

smooth parameters.  That input is then used for other models or ANNs.  When used 

to predict irradiance, a multivariate problem is usually preprocessed and reduced to 

one independent and one assumed-dependent variable space.  When multiple 

variables are included in a formulation, the result is usually stacked statistical network 
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like a Markov chain process or a Bayesian network.  Statistical models are particularly 

appropriate for longer term forecasts, greater than one hour.   

Machine Learning Models use irradiance and other inputs, along with statistics to 

construct probability spaces for irradiance predictions.  When referring to systems 

using ANNs to predict outcomes, there are associators and there are predictors.  

Associators in this context, use unsupervised machine learning to associate future 

irradiance with input features.  That unsupervised correlation of feature spaces is 

mapped statistically to a future irradiance level with what is referred to as a 

Relationship Map.  Predictors in this context, use machine learning algorithms and 

supervised learning to predict future irradiances from past learned data.  Thus, 

predictors directly predict irradiance where associators must use a statistical 

relationship map to construct a quasi-dependent relationship between inputs and 

outputs.  

3.2.1. Statistical Methods 

The most common statistical models utilized in SIMF research are show below in 

Figure 3-3.  
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Figure 3-3. Diagram of classical statistical methods used in solar irradiance forecasting. 

A discussion of the most common statistical tools as they are applied to irradiance 

forecasting, below. 

3.2.1.1. Regression Analysis 

Regression analysis assumes a mathematical relationship between dependent and 

independent variables.  The techniques for solving this relationship is the estimation 

of various parameters of these functions that fit past data.  Regression analysis is split 

into multidimensional and one-dimensional data. 

• Generalized Additive Models:  attempt to reconstruct a signal, like irradiance, 

by assuming a linear relationship between smoothing functions and discrete 

signal values in order to fit the data.  They are the multifunctional form of a 

regression analysis.  The formulation is shown below for irradiance I.  
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𝑔(𝐼(𝑦)) = 𝛼 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑖(𝑥𝑖) (3-1) 

Where α is a constant and fi(xi) are functions of a parametric form, ie. 

polynomial or linear functions 

A notable example of the use of a generalized additive model is from M. 

Brabec, M. et al. who used latitude, time of day, day of year and other 

variables to produce a single nowcasted irradiance [103].   

Linear Regression:  assumes a linear relationship between the 

independent and dependent variables.  It has the form: 

�⃑� = �⃑⃑� 𝑋 + 𝛽  

𝑋 =  [

1 𝑥11

1 𝑥21

⋯ 𝑥1𝑛

⋯ 𝑥2𝑛

⋮ ⋮
1 𝑥𝑛1

⋱ ⋮
⋯ 𝑥𝑚𝑛

] 

(3-2) 

Where Y⃑⃑ , m⃑⃑⃑  and β⃑  are vectors and X is a matrix or a vector. 

β is vector representation of the error between the regression and the data.  

Linear regression has been used for irradiance forecasting techniques, from 

extracting features from images of the sky to quantifying systematic drift error 

in irradiance measurements, among others [104], [105], [106], [107], [108]. 

• Non-linear and Harmonic Regression:  use basis functions that do not assume 

a linear relationship between the independent and dependent variables.  

Harmonic regression models a functional relationship between the variables as 

a combination of sinusoidal functions.   
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• Moving Average Model:  The moving average model is mathematically a linear 

regression, but it also contains a stochastic term.  It assumes a linear 

relationship between the output and current plus previous stochastic terms.  

The moving average model of order q is defined below: 

𝑌𝑡 = 𝜇 + 휀𝑡 + 𝛼1휀𝑡−1 + ⋯+ 𝛼𝑞휀𝑡−𝑞 (3-3) 

Where μ is the mean, εq is white noise and αq are the parameters to find. 

The moving average model is used extensively with the Autoregressive model 

and is revisited later in Stochastic Differential Formulations. 

3.2.1.2. Smoothing 

Smoothing is the least computationally intensive of all the irradiance forecasting 

techniques.  The “trivial” case is the baseline by which all models must outperform 

for a forecasting technique to be considered valid.  It involves using the current 

irradiance forecast as the predicted irradiance. 

3.2.1.3. Stochastic Differential Formulations 

Stochastic Differential Formulations are a set of mathematical equations that take the 

form of a stochastic differential equation.  Implicitly, the formulation relies on past 

data to predict future irradiance.  They also contain a stochastic term.   

Attempts have been made to formulate continuous irradiance models based on a 

stochastic differential equation (SDE) framework and irradiance only [109].  A list of 

the most common discrete forms follows: 



51 
 

• Autoregressive model:  The autoregressive model assumes a linear relationship 

between its output and a its previous values plus a stochastic term.  The 

formulation is shown below for irradiance I and model order p: 

𝐼𝑡 = 𝛼 + ∑𝜑𝑖𝐼𝑡−1 + 𝜖𝑡

𝑝

𝑖=1

 
(3-4) 

 

Where α is a constant and φi are parameters of the system.  The 

autoregressive model is rarely used by itself.  Instead it is usually combined 

with the moving average model and/or other parameters for predictions.   

However, the autoregressive model can be used as a filter when the stochastic 

terms are calculated from previous data.  The autoregressive filter has the 

advantage of being more responsive to the direction of movement of the 

signal as opposed to a linear moving average.  V. Bone et al. [110] of the 

University of Queensland used an autoregressive filter to preprocess sky 

images to obtain a better velocity profile of the cloud motion. This is noted 

for future reference, as smoothing velocities from a particle image velocimetry 

algorithm is a problem that has arisen with the current research. 

• Autoregressive Moving Average Model (ARMA) and the Autoregressive 

Integrated Moving Average Model (ARIMA):  These two models are 

extensively used as a benchmark of older technique for which machine 

learning and neural networks have become the dominant analysis tool for 

irradiance forecasting [111], [112], [113], [114]. The formulation of the 
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autoregressive moving average model for irradiance I and order p, q is listed 

below: 

𝐼𝑡 = 𝛼 + 휀𝑡 + ∑𝜑𝑖𝐼𝑡−1 + ∑𝜃𝑗

𝑞

𝑗=1

𝜖𝑡−𝑗

𝑝

𝑖=1

 (3-5) 

Where α + εt is the expected mean and φi & θj are the parameters of the 

system. 

The autoregressive integrated moving average model (ARIMA) attempt to 

keep the mean of the data constant or zero by doing a transformation on the 

mean before the ARMA process.  The data transformation is accomplished by 

calculating the data as a difference from the mean.  The new transformed data 

has a mean of zero.  The ARMA model is then applied to the data. 

Reikard and Hansen of Sandia National Laboratories and US Cellular used 

frequency domain model based on a Fourier transformation of the ARIMA 

[115]  They had several models that tested time horizon irradiance forecasts 

from 15 minutes to three hours. 

• Autoregressive Moving Average with exogenous parameters:  This 

formulation is almost identical to the ARMA model, but it adds another 

parameter.  Its formulation is listed below.  It utilizes the same parameters as 

(3-5) but also adds the parameter τ.   
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𝐼𝑡 = 𝛼 + 휀𝑡 + ∑𝜑𝑖𝐼𝑡−1 + ∑𝜃𝑗

𝑞

𝑗=1

𝜖𝑡−𝑗

𝑝

𝑖=1

+ ∑𝜃𝑘

𝑘

𝑘=1

𝜏𝑡−𝑘 

 

(3-6) 

3.2.1.4. Filters and Chain Processes 

Chain Processing is a simple model that assumes current conditions have a strong 

effect on the future.   

• Random Walk:  The simplest chain process is a random walk process.  For 

example, if the sky is uniformly hazy, then it is likely that future irradiance will 

be impacted by current irradiance conditions.  Thus, when predicting future 

irradiance, it does not matter what the irradiance was five hours ago.  It only 

matters what the irradiance was a few minutes ago.  This random walk process 

works well for uniform conditions. 

• Markov Chain Networks:  attempts to predict future irradiance by linking 

probabilities.  The process incorporates a probability map of future irradiances 

given that certain occurrences already happened.  For example, given that 

today was sunny, the probability tomorrow will be sunny can be predicted 

with better accuracy given that today is sunny.  Markov chains are useful in 

predicting day-ahead irradiances [116], [117]. 

• Kalman and linear filters operate in the same manner as a Markov chain, but 

the probabilities are updated as time and new data progress forward.  When 

forecasting irradiance, the Kalman filter has proved useful for longer term 
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forecasts of irradiance (1-3 hours) by smoothing weather forecasts of wind 

direction among other variables [118], [119], [120], [121]. 

• Bayesian Networks:  are like a Markov chain except they assume a Bayesian 

relationship among the inputs.  For example, if a distributed sensor network 

of irradiance sensors is used to predict irradiance at a given area, a Bayesian 

network can be constructed.  Suppose that every time a particular sensor is 

occluded, the solar field gets occluded.  However, occasionally, the occlusion 

is due to a bird.  During migratory season this chance goes up to 1% false 

positive from a bird.  The sensor is 99% sensitive.  However, 1% of the time 

the sensor returns a low value almost at zero.  The sensor is 99% specific. The 

sensor test will produce 99% true positive results and 99% true negative 

results of actual irradiance.  The operator attempts to ask the question posed 

mathematically in (3-7).  What is the probability of a cloud occlusion scenario 

we shall call “A” being correct, given the known sensor failure probability we 

shall call “B”. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
  (3-7) 

Where P(A|B) = the probability of A, given B is true and where P(A) =

probability of A. 

A Bayesian network would quantify all the probabilities for all the sensors to 

construct a network.  Unlike a Markov chain, a Bayesian network can produce 
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a certainty about the accuracy of the prediction given the inaccuracies within 

the data collection sensor network.   

3.2.1.5. Relationship Maps 

Relationship maps are included for completeness.  When unsupervised learning is 

expounded upon below, it is shown that a relationship map is needed to make 

meaningful predictions.  Unsupervised learning techniques are categorizers.  They can 

give information about a state of the system, but they require another categorizer 

network and a relationship map between the two categories.  Thus, relationship maps 

in this context are usually, but not always, binary maps that connect categories of 

operational states with future irradiance categories. 

The type of mathematics from which relationships maps are derived is called category 

Theory.  Adaptive Resonance Theory (ART), which will be elaborated on later, is a 

prime example of the utilization of category theory mathematics with multiple ANNs 

[122], [123], [124].  With LAPART, which will be elaborated on later, two 

unsupervised learning ART networks are coupled to form a unit map between inputs 

and outputs.  Though other operators exist in category theory mathematics, the unit 

operator is the extent of the currently useful operators.  When restricted to the unit 

operator with two networks, a binary relationship map can be constructed as a 

matrix. 
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3.2.2. Machine Learning and Artificial Intelligence Methods 

The most common Machine Learning and Artificial Neural Networks that are utilized 

in SIMF research are shown below in Figure 3-4. 

 

Figure 3-4. Diagram of machine learning models used in solar irradiance forecasting. 

Since artificial neural networks comprise a large part of current techniques in 

forecasting SIMFs of less than 15 minutes, they are discussed first.   

3.2.2.1. Artificial Neural Network Architecture 

The Rosenblatt Perceptron (1958, 1962) was the first neural model to formulate a 

convergence theorem for linearly separable inputs.  Rosenblatt proved that given the 

linearity condition of the inputs, the perceptron would converge.  This convergence 

manifests itself in the form of a hyperplane between the two classes [102].  This 

breakthrough facilitated the first neural models by which a “learning” (parameter 
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update from a statistical model standpoint) can occur.  This convergence theorem is 

known as the Rosenblatt Convergence Theorem. 

The simplest neuron is a single layer nonlinear neuron shown in Figure 3-5. 

 

Figure 3-5. Nonlinear single neuron, single layer model. 

The neuron output yk can be written as follows: 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) 

𝑢𝑘 = ∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

 
(3-8) 

The bias bk has the effect of moving the activation function so it’s centered over the 

summation of the range of the synaptic weights.  Depending on network type, the 

activation function can take many forms.  However, it usually is constrained on the 

interval [0,1] or [-1,1].  The input is also normalized on the interval [0,1] or [-1,1].  In 

order to match the neuron output to the appropriate interval, the bias needs to be 

selected correctly. 
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The number of types of activation functions are one level of classification of Neural 

Networks.  They are listed below. 

• Winner Take All (WTA):  The WTA activation function is a binary all or 

nothing function.  It is shown in Graph 3-1 

 

Graph 3-1. Winner Take All (WTA) summation function for neuron output 

The WTA perceptron was the basis for neural networks, however it is typically 

not used in practice, and is only included for completeness. 

• Sigmoid and Tanh:  A more common activation function for a neuron is the 

sigmoid and tanh.  They are graphed below. 
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Graph 3-2. Sigmoid neuron activation function. 

 

Graph 3-3. Hyperbolic tangent neuron activation function. 
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C. Combria and H. Pedro, among others, have extensively used single layer 

perceptron networks with sigmoid activation functions [125], [126], [127], 

[128], [129].  The main inputs are sky images, but they have also extensively 

used other weather data as inputs to the network to make irradiance 

predictions [130].   

The hyperbolic tangent function is nearly the same as the sigmoid function, 

but the range is different.  As was stated earlier, the inputs should be scaled 

accordingly, and a correct bias needs to be selected when using either 

activation function. 

• ReLu and Wavelet Functions:  The ReLu neuron activation function is useful 

for so called “deep learning” neural networks, in that it converges faster than 

the sigmoid and tanh functions.  In this context, “convergence” means the 

weights “converge” and stop updating.  “Deep Learning” implies among other 

metrics, a very large data set.  In operation with the sigmoid and tanh 

functions, the weights will continue to update until a parameter is set that 

declares weight-convergence because the update is very small.  Lastly, learning 

and the weight update process, will be explained below.  Several papers have 

used this function to help converge with large deep learning data sets [131], 

[132]. 

Wavelet Neural Networks are included for completeness as another form of 

activation function.  The two types of neuron activation functions are graphed 

below. 
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Graph 3-4. ReLu neuron activation function. 
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Graph 3-5. Wavelet neuron activation function. 

• Gaussian:  The Gaussian activation function is utilized in Fuzzy Logic and 

Fuzzy neural networks.  These concepts will be discussed later but the 

Gaussian curve is shown in Graph 3-6 below, with multiple centers. 
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Graph 3-6. Gaussian neuron activation functions utilized in fuzzy neural networks. 

• Radial Basis Functions (RBF):  RBF ANNs use the weight of the activation of 

a neuron as the distance from a cluster center in the data.  They must be 

initialized with the centers of the data.  Often, a clustering algorithm is utilized 

as a basis for the initial weights.  In other case, random values are utilized.  

Though not as common, RBF ANNs have been utilized for irradiance 

forecasting [133], [134], [135]. 

• Fuzzy Logic:  Fuzzy Logic has been implemented in several forecasting papers 

both in the form of a map and as a multilayer ANN [136], [137].  Fuzzy logic 
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is a form of “if and” logic, where membership categories assign a truth value 

to each contribution of each statement.  What results is a truth value of 

predicted outcome between zero and one, as opposed to a binary true or false.   

For example, take the fuzzy system with three membership functions shown 

below in Graph 3-7.  It represents the three states of human comfort in a 

fuzzy system. 

 

Graph 3-7. Fuzzy system representing the thermal comfort of a room by most people. 
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When taking a temperature reading at 69° F, fuzzy logic uses the aggregation 

of membership function to construct several fuzzy truth statements shown 

below. 

• T=69; if cold is 0.6 & no-complaints is 0.4 & hot is null; then fuzzy 

logic truth value between 0 and 1 (example, raise temperature 

0.6° F) 

• T=70; if cold is 0.5 & no-complaints is 0.5 & hot is null; then fuzzy 

logic truth value between 0 and 1 (example, raise temperature 

0.5° F) 

These fuzzy truth statements can be aggregated to make a multilayer neural 

network or fuzzy control system [138] to make irradiance predictions.  To 

convert back to crisp logic, a maximum or minimum function is employed to 

select a binary true or false output.   

In order to highlight the multiple concepts that comprise a multilayer fuzzy 

ANN, an example of how this is implemented is highlighted in the Supervised 

Learning of fuzzy Neural Networks section below. 

3.2.2.2. Multilayer Neural Network Architecture 

The concept of a single layer ANN was shown in Figure 3-5, above.  The multilayer 

model is shown below in Figure 3-6.   
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Figure 3-6. Multilayer Neural Network with the same number of outputs as inputs and the 
same number of weights per layer. 

This network has the same number of inputs as outputs and the same number of 

weights per layer.  In use, the number of layers and weights in each individual layer 

can vary.  In another application of deep learning that did not included explicitly 

utilize ReLu() functions, Ahmed and Chen used a general multilayer neural network 

along with environmental parameters among others, to forecast up to week ahead 

grid level energy consumption [139].  

Methods for the adaptation of weights, known as ANN learning is highlighted below 

in Backpropagation and Supervised Learning of General Neural Networks. 

3.2.2.3. Supervised Learning of Fuzzy Neural Networks 

A fuzzy ANN model is shown below  
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The mathematics of a multilayer ANN will be highlighted with the construction of 

the T-S fuzzy ANN used by Kaiju, Xuefeng, Chaoxu and Dan to make same day 

irradiance predictions.  The T-S Fuzzy ANN is highlighted in Figure 3-6 with Layer 

one as the Fuzzification layer, layer two as the fuzzy reasoning layer and layer j 

corresponding to the third layer known as the defuzzification layer. 

The fuzzification layer obtains a membership value μ with (3-9) below. 

𝜇𝑖
𝑗(𝑥𝑖) = 𝑒

−(
𝑥𝑖−𝑐𝑖

𝑗

𝑏𝑖
𝑗

)

2

 (3-9) 

Where ci
j
 and bi

j
 are constants to update. 

The second layer calculates the weights with (3-10). 

𝑤𝑗 = ∏𝜇𝑖
𝑗(𝑥𝑖)

𝑛

𝑖=1

= 𝑒
−∑ −(

𝑥𝑖−𝑐𝑖
𝑗

𝑏𝑖
𝑗

)

2

𝑛
𝑖=1

 ; 𝑗 = 2 (3-10) 

This fuzzy reasoning layer is the only operational difference between a fuzzy ANN 

and the more generic ANNs.  After this step, a fuzzy ANN operates with learning in 

the same manner as other ANNs utilizing an energy minimization function. 

The fourth layer calculates the proportion of each weight that is applicable in the 

fuzzy reasoning layer.  It is calculated with (3-11). 

𝑝𝑖
𝑗
= 

𝑤𝑗

∑ 𝑤𝑗𝑛
𝑗=1

 (3-11) 
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In order to obtain the output, one must convert from the fuzzy response to a crisp 

output.  This is done with (3-12). 

𝑦𝑖 = 
∑ 𝑤𝑖 ∗ (∑ 𝑝𝑖

𝑗𝑛
𝑗=1 )𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (3-12) 

The process of supervised learning is constructed with an error calculation shown in 

(3-13). 

𝑒 =
1

2
(𝑦 − 𝑦𝑐)

2 (3-13) 

Where y and yc are the actual and expected outputs. 

The TS fuzzy ANN was highlighted above.  The concept of backpropagation and 

weight updates is not highlighted for a fuzzy ANNs.  Instead, this concept is 

mathematically shown below for general ANNs, continuing from the cost function.   

3.2.2.4. Backpropagation and Supervised Learning of General 

Neural Networks 

With general ANNs, the output function of layer j and row i is defined in (3-14).  It is 

like (3-8) for a single neuron. 

𝑎𝑖
𝑗
= 𝜎 (∑𝑤𝑖

𝑗
∗ 𝑥𝑖

𝑗−1
− 𝑏𝑗

𝑛

𝑖=1

)  
(3-14) 

 

Where σ is the activation function j is the layer. 

To illustrate the backpropagation algorithm, the cost function is derived to obtain the 

direction of descent in our gradient descent algorithm.  We wish to vary the weights 
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of the network to better approximate the input to output mapping that exists in the 

data.  Since the bias is a constant, we wish to take the derivative of the cost function 

relative to the weights.  For this operation, we employ the chain rule as is illustrated 

in (3-16) while also slightly tweaking the cost function from its earlier version in 

(3-13), known as the error function. 

𝑐𝑖
𝑗
= (𝑎𝑖

𝑗
− 𝑦𝑖

𝑗
)
2
 (3-15) 

Where ai
j
 is the output activation from the previous layer and yi

j
 is the expected 

output. 

The analysis proceeds with one row of activation in order to drop the subscript i and 

simplify the math.  The cost function derivative follows  

𝛿𝑐𝑗

𝛿𝑤𝑗
=

𝛿𝑧𝑗

𝛿𝑤𝑗

𝛿𝑎𝑗

𝛿𝑧𝑗

𝛿𝑐𝑗

𝛿𝑎𝑗
 (3-16) 

It is now easier to define the output in terms of the weights. 

𝑧𝑗 = 𝑤𝑗 ∗ 𝑎𝑗−1 + 𝑏𝑗 
(3-17) 

 

Where 𝑎𝑗−1 is the activation of the j-1 layer and 𝑏𝑗 is the bias. 

𝑎𝑗 = 𝜎(𝑧𝑗) 
(3-18) 

Where σ(zj) is the activation output of neuron j. 

The following definitions pertain to the chain rule derivatives of the cost function. 
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𝛿𝑐𝑗

𝛿𝑎𝑗
= 2(𝑎𝑗 − 𝑦) 

(3-19) 

 

𝛿𝑎𝑗

𝛿𝑧𝑗
= 𝜎′(𝑧𝑗) 

(3-20) 

 

𝛿𝑧𝑗

𝛿𝑤𝑗
= 𝑎𝑗−1 (3-21) 

Finally, we define the backpropagation update with a gradient descent formulation 

shown below. 

∆𝑤 =  −𝜂
𝛿𝑐𝑗

𝛿𝑤𝑗
 (3-22) 

Where 𝜂 is a learning rate between 0 and 1. 

Note that this backpropagation technique was highlighted for a single neuron.  In a 

multilayer application there is a summation of effects from each neuron’s output.  

Thus, when backpropagating the algorithm, there involves another or multiple other 

rows.  The gradient in (3-22) is utilized in cost function energy minimization 

technique, known as gradient descent iterative solvers.   

The backpropagation algorithm feeds forward the input and then backpropagates an 

update many times.  It is said to converge when the weights have sufficiently 

stabilized and stopped changing within a certain threshold and/or the answer 

becomes close enough to tolerance threshold.  These thresholds can be calculated in 

several ways including utilizing a mathematical normalization algorithm such as 

Euclidian distance. 
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In the solar irradiance forecasting paper reviewed, whenever an ANN was used, 

unless otherwise stated as a different architecture, it utilized a backpropagation 

learning algorithm based on a gradient descent methodology.  This was to be 

expected as backpropagation networks are most widely known. 

3.2.2.5. Unsupervised Learning 

Unsupervised learning is mentioned in the context of irradiance forecasting because 

from a mathematical standpoint of the prediction system, there is no such thing as 

unsupervised learning.  As was mentioned in the Relationship Maps section above, 

two or more ANNs can extract features from data, but it is the association of features 

of the input space to the features of the output space with a relationship map, that 

makes an irradiance prediction possible.  The prediction comes in the form of a 

recognized input feature space that has a learned association to a mapped output.  

One concept of unsupervised learning will be highlighted in the Literature Review of 

Adaptive Resonance Theory and LAPART Architecture section.  Unsupervised 

learning is also visited in the clustering section. 

3.2.2.6. Recurrent Neural Networks 

Recurrent ANNs have a layer that feeds back on themselves with the output of one 

input presentation as the input to the next input set.  A model is shown below as an 

example. 
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Figure 3-7, Recurrent artificial neural network with one hidden neuron layer. 

Though not as common, recurrent ANNs have been used to predict intraday 

irradiance [140].  Weather models utilizing recurrent ANNs were also utilized to 

predict energy production of PV plants for microgrid planning at the day ahead 

timeframe [141]. 

3.2.2.7. Convolutional Neural Networks and Time Delay Neural 

Networks 

Convolution ANNs are a multilayer formulation where each layer of the network 

extracts features of the inputs.  When using a convolution network with two-

dimensional data, the network is designed to be invariant to scaling, translation and 

skewing among other forms of distortion.  An example of a convolution ANN 

processing a 24 by 24 pixel image is shown below in Figure 3-8. 
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Figure 3-8, Convolution artificial neural network showing the first two layers. 

Convolution ANNs have been utilized by Siddiqui, Bharadwaj et.al. to make 

nowcasting predictions of solar irradiance [140].  They combine the nowcast with real 

time images of the sky to produce one to four-hour irradiance predictions. 

Time delay networks are added for completeness despite there being no examples of 

this network in use for irradiance forecasting in the papers reviewed.  Time delay 

ANNs perform a similar task as a convolution ANN but on the input side instead of 

in the network.  For time delay ANNs, the input is time delayed and aggregated 

instead of using a single data vector as one input.  This is highlighted below. 

𝐼𝑡 = 𝑆𝑡−2 + 𝑆𝑡−1 + 𝑆𝑡 
(3-23) 

Where I is the input vector and the ANN at time t, and S are the sample vectors at 

previous time intervals. 
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3.2.2.8. Self-Organizing Maps 

Self-organizing maps (SOMs) are typically organized in a two-dimensional map where 

the weights of the ANN are based on the distance from other activated weights.  

Higher dimensional self-organizing maps also exist.  SOMs have been used to 

produce irradiance predictions to prevent overfitting of the data [142]. 

3.2.2.9. K-Nearest Neighbor 

The K nearest neighbor methodology is a form of unsupervised learning.  The 

algorithm utilizes a single data point and a preset “K” number of neighbors.  The 

data point calculates a distance from itself relative to all other data points.  It then 

selects the highest number of reclassified points.  For example, if the data point in 

question is based on K equal to three, and two of the three classes of nearest 

neighbors are close to (arbitrarily chosen) class “4”, the classification of the data point 

would be class 4.  If there is an equal number of classes for each nearest neighbor, the 

algorithm fails, or the algorithm could return the closest class of the nearest neighbor 

of other data points.   

Chu, Coimbra and Pedro have utilized this algorithm along with global horizontal 

irradiance, direct normal incidence and sky images to make 5-30 minute irradiance 

predictions for PV farms [143], [144], [145].  They achieved forecasts improvements 

of 10% to 25% over persistence models utilizing global horizontal irradiance and 

direct normal irradiance.   
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3.2.2.10. Clustering Algorithms and Support Vector Machines 

Other clustering algorithms have been utilized as a preprocessing to further 

algorithms.  Due to the low dynamic range of visual images utilizing clustering 

algorithms and support vector machines as prediction methodologies, clouds often 

appear brighter than the corresponding insolation values at the time of the prediction.  

Several methodologies for intrahour irradiance predictions utilize a clustering 

algorithm to correlate current cloud thickness to irradiance values.  Then a separate 

methodology is employed to make irradiance predictions base on ground or satellite 

images [146], [147], [148]. 

Support Vector Machines (SVMs) are included for completeness as a separate form 

of bifurcation of data.  SVMs can classify nonlinear data by processing it with 

multiple mathematical transformation in order to better find a binary linear classifier.  

In two dimensions, the data is separated by a line.  In three and higher dimensions 

the processed data is bifurcated with planes and hyperplanes. 

3.3. Short-term and SIMF Methods in Literature by 

Collection Technology Type and Forecasting 

Length 

A review of the relevant literature about the mathematical models used to make 

irradiance predictions was highlighted above.  A review of the technologies used to 

make irradiance predictions follows. 
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3.3.1. Single Sensors Ground Based Camera Systems  

There are two main categories of apparatuses that obtain images of the sky form the 

ground.  The first category is like that of a telescope, where light is reflected off a 

curved mirror.  The second category is direct observation with a fisheye lens.  In both 

cases, a physical and/or electronic shutter was sometimes employed to produce 

higher dynamic range pictures.  This was often done by combining multiple pictures 

taken sequentially. 

3.3.1.1. Total Sky Imager 

One of most common technology for irradiance forecasting is the use of a Total Sky 

Imager (TSI) [149], [150], [151], [152], [153].  The TSI is a visible spectrum reflected 

imaging system to capture images of the sky and surrounding clouds.  A picture is 

shown below in Figure 3-9 highlighting a TSI 440B from the manufacture’s brochure 

[154]. 

 

Figure 3-9, Total Sky Imager 440B. 
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The apparatus has a CCD camera (640 x 480 pixels) that looks down at a curved 

mirror.  The near hemispherical dome allows for the reflection of almost all the sky 

and clouds.   

Along with taking pictures the TSI has an algorithm that parses out clouds from the 

sky.  An example is shown below. 

 

Figure 3-10. Cloud parser example with the TSI 440b identifying clouds.  The shadowband is 
highlighted with the black overlay. 

To minimize the forward scattering from the sun a shadowband is painted onto the 

reflective surface of the TSI.  The round reflective mirror rotates with the sun 

throughout the day so the shadowband is always in the line with the ecliptic longitude 

of the sun, blocking it in the image. 

Sample images taken from Sandia National Laboratories Total Sky Imager are shown 

below to highlight a cleanliness problem associated with the robustness of the 
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technology.  One should note the red arrow pointing to bird poop that has been 

classified as a cloud. 

 

Figure 3-11. Total Sky Imager (TSI) pictures from Sandia National Laboratories.  The 
picture on the right is the automated cloud detection algorithm built into the TSI system.  

The bottom TSI also mistakes the bird poop as a cloud. 

In addition, Mie scattering around both the sun and near the horizon are producing 

artificial cloud images.  This is due to the small water spots from past rain. 

The main drawbacks of the TSI apparatus are listed below. 

1. The shadowband occludes clouds near the sun and thus removes some 

potentially significant information. 
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2. The reflective surface needs constant maintenance by keeping it clean from 

rain spotting and bird excrement among other debris.  Birds are a particular 

problem because the camera apparatus on top makes an ideal landing area. 

3. Cosine distortion of the picture near the horizon is amplified by the round 

reflective mirror geometry. 

3.3.1.2. All Sky Imager and Generic devices 

Another popular technology used for irradiance forecasting is the All Sky Imager and 

similar wide field-of-view camera imagers encased in a weather enclosure [155], [156], 

[157], [158], [159], [160].  The All Sky Imager made by EKO Instruments B.V and is 

shown below in Figure 3-12 from their brochure [161]. 

 

Figure 3-12. All Sky imager, ASI-16. 

Unlike the TSI, the All Sky Imager (ASI) directly looks at the sun and does not have a 

shadowband to prevent or limit forward scattering.  The TSI has a 180° field of view. 



80 
 

Though similar in lens distortion the ASI has similar main drawbacks.  They are listed 

below. 

1. Cosine distortion of the image still occurs near the horizon. 

2. The ASI has no sun occlusion to limit forward scattering. 

Lastly, the ASI has an algorithm for estimating cloud height that is built in.  To obtain 

cloud heights, however, multiple ASIs must be utilized. 

3.3.1.3. Cloud Base Height Estimations with the TSI and ASI 

Several articles pertaining to irradiance forecasting have utilized multiple TSIs and/or 

multiple ASIs to estimate the cloud ceiling height [162], [163], [164], [165], [166].  It is 

advantageous to estimates of cloud heights to enhance prediction accuracy near the 

horizon.  This is because the effects of the cosine error near the horizon can be 

directly calculated when the cloud ceiling height is known.  Cosine error occurs when 

the angle normal to the plane is non-zero.  When a pixel is projected onto a plane, the 

new area it occupies is proportional the size of the pixel divided by the cosine of the 

angle relative to the normal.  Cosine error is of course zero when the sun is directly 

overhead.   

Knowing the cloud height is also advantageous due to transmission through higher 

level clouds being different from lower heights.  Intuitively, this would make sense as 

clouds above 50,000 ft. are light and wispy, whereas lower height clouds can be much 

denser and allow less irradiance through them.  This is important because, in the 
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visible spectrum, clouds of different irradiance transmission levels often have 

disproportionately similar pixel values. 

3.3.2. Multiple Sensor Networks 

Multiple sensors are often used to produce irradiance forecasting for a given area.  

This methodology shifts the costs associated with irradiance predictions from a single 

expensive sensor at the forecasting site to multiple low-cost sensors across a large 

geographic area, like a city.  The disadvantage is that a communications infrastructure 

must be in place and operational for the system to work.  In a smart grid context or at 

a commercial level where communications infrastructure is operational, this is a more 

feasible goal.   

Using small scale PV installation infrastructure is a methodology that that has the 

advantage of not needing additional sensors [167], [168].  However, a 

communications infrastructure must be installed and operational for the system to 

operate.   

Other methodologies for irradiance forecasting with multiple sensor networks rely on 

embracing the infrastructure challenge by installing specific sensors for irradiance 

measurements.  One model has been studied to install small, portable, PV powered 

cellular connected radiation measurement sensors [169].  Another methodology is to 

use the already installed, smart-grid connected irradiance measurements at reliable 

locations, like a substation [170]. 
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A third methodology does not require any additional sensors.  Bessa, Trindade, Silva, 

and Miranda used feeder information and smart-grid enabled PV sites to make 

irradiance predictions for six hour-ahead forecasts [171]. 

The distance of the sensors relative to each other and the distance to the forecast site 

have a large effect on the timeframe of prediction for multiple sensor network 

irradiance forecasting methodologies.  These parameters can be controlled by adding 

more sensors, but that comes at a cost. 

3.3.3. Weather Data Models 

Weather models are included for completeness.  However, weather models for 

irradiance forecasting are almost exclusively for longer predictions of greater than one 

hour.  They typically take weather variable like winds speed, ambient temperature and 

current irradiance among others as the inputs to their models [172], [173], [174], 

[175], [176].  Spatial data about surrounding sites as well as site elevation, latitude and 

panel tilt have also been investigated as parameters of investigation for weather data 

models in the literature [177], [178].  Helioclim maps have been investigate for 30-

min. to 6-hour irradiance forecasting [42].  Helioclim maps are daily average 

irradiance maps of a given area.  In another use of weather data Huang and Thatcher 

investigated using the Conformal Cubic Atmospheric Model (CCAM) and the Global 

Forecast System (GFS) weather data models for future irradiance forecasts at a 

resolution of 4-km [179]. 
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3.3.4. Satellite Data Models 

Satellite data models are included for completeness; however, their models are best 

suited for a 30-minutes to 3-hour ahead forecasting [180].  Satellite data is used to 

observe surrounding clouds and project the cloud path and shadows onto the 

ground.  They are useful to longer term predictions of large cloud masses. 

3.3.5. Irradiance Input Models 

Irradiance input models are more akin to signal processing than forecasting in that 

they are highly dependent if not solely dependent on irradiance only as the input.  

Triple exponential smoothing and autoregressive methods are popular employments 

of utilizing past irradiance data as a prediction of the future [181], [182].  Other 

models preprocess irradiance data first and then input that result to an ANN [183]. 

3.3.6. Simulations 

Simulations are included because it is often useful to validate a model on a varied data 

set, especially when that data does not exist.  Jamaly and Kleissel generated virtual 

clouds and irradiances using a large eddy, fluid dynamics code [184].  In another 

simulated data set, Kurtz, Mejia and Kleissl used a large eddy simulation and a 3D 

radiative model to produce synthetic sky images and irradiance measurements [185].  

Simulations are useful in predicting day ahead irradiance predictions. 
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4. Literature Review of Adaptive Resonance 

Theory and LAPART Architecture 

The ANNs reviewed thus far have always used a cost function along with some sort 

of gradient method.  However, a relevant question to ask is:  Is the network simply 

memorizing when deep learning, or is there an inherent structure to the data that enables learning in 

the traditional sense?  An attempt to answer this important question came out of a paper 

titled, ‘A Closer Look at Memorization in Deep Networks’ [186].  Their research 

compared multilayer ANN backpropagation learning of randomly labeled data sets to 

that of properly labeled data sets.  When comparing the learning accuracy of random 

labeled data to that of proper data they found comparable results.  The structured 

data did provide better absolute but not statistically significantly better results.  

However, when they compared the rate at which the weights updated and the 

network eventually stabilized via the weights no longer changing significantly, they 

found that the properly labeled data converged non-linearly fast as measured by the 

number of epochs needed.  The random data converged at a linear rate, showing no 

such non-linear learning behavior.  This could imply that structured data has inherent 

features and ANNs are learning a structure as opposed to memorizing answers. 

Since ANNs have some other structure to learning aside from simple memorization, 

a second question arises; If a local minimum on the surface of the cost function is found, do all 

local minima provide similar accuracy answers?  This question was investigated by a team of 

researchers who found, assuming the data is structured, all local minima do provide 
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roughly equivalent answers [187].  Thus, it is not essential to find the absolute 

maximum to learn structured data.  The same was not true for unstructured or 

random data. 

It was shown that ANNs are doing more than simple memorization.  This motivates 

two new questions.  How fast does the network learn and how, or does, the network forget?  The 

stability-plasticity dilemma highlights this forgetfulness question which Adaptive 

Resonance Theory (ART) attempts to provide an answer to.   

4.1. Adaptive Resonance Theory Stability and Plasticity 

The stability-plasticity dilemma is highlighted by the following example.  Imagine the 

sitting in Plato’s Allegory of the Cave [188] as a captive person watching the shadows 

on the wall.  The stability of the captor’s brain is well established to recognize 

shadows on the wall.  However, when the captor breaks out of their mental prison 

and they wander out of the cave, the novelty of seeing the full beauty of all the colors, 

they recoil and do not want to accept this new stimulus.  They recoil because their 

brain is “stable” and has been trained only on shadows.  Comprehending colors 

would require a degree of neural “plasticity” to learn novel situations of which they 

cannot.   

The Allegory of the Cave highlights the in-plasticity of the human brain.  The whole 

point of the allegory of the cave is a comment on humanities stability of thought to 

accept the shackles of propaganda and the extreme hardship of plastically adapting 

one’s own neuro-kinetics to a new form of thinking.  The same problem occurs with 
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ANNs, where the ANN may be very good at recalling situations of the past from a 

stable learning process, but then fail plastically when they encounter a novel situation. 

Gail Carpenter and Stephen Grossberg highlighted this tradeoff in their 1987 

introducing Adaptive Resonance theory.  “The properties of plasticity and stability are 

intimately related.  An adequate system must be able to adaptively switch between its stable and 

plastic modes.  It must be capable of plasticity in order to learn about significant new events, yet it 

must also remain stable in response to irrelevant or often repeated events.” [189]  Adaptive 

Resonance Theory (ART) attempts to address this dilemma by adapting the networks 

size to learn novelty yet maintain memory  [190], [191]. 

ART 1 and ART 2 are both forms of an unsupervised feedforward ANN used for 

categorization of binary input patterns [192], [193], [194].  Where ART 1 will directly 

categorize a binary input pattern, ART 2 adds another layer to quantify a binary 

pattern.  This input pattern is then fed-forward where its category membership is 

subject to (4-3).  A fuzzification process was introduced for the input as highlighted 

in (4-1).  This allowed floating point numbers so long as each component of the 

input was normalized between zero and one. 

4.2. ART Maps and LAPART 

Fuzzy ARTMAP and ARTMAP utilize a combination of two feedforward fuzzy ART 

and general binary ART networks to create a relationship map between them [195] 

[196].  To illustrate this mapping process, the Laterally Primed Adaptive Resonance 

Theory network (LAPART) is introduced below.  LAPART highlights the ARTMAP 
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process while adding an additional lateral priming pre-search algorithm [197], [198], 

[199], [200]. 

In the fuzzy form, the normalized input must be complement-coded as follows: 

𝐼 = (𝑎, 𝑎𝑐) = (𝑎1, 𝑎2, 1 − 𝑎1, 1 − 𝑎2) (4-1) 

The weight update follows the equation: 

𝑊𝐽
𝑛𝑒𝑤 = 𝛽(𝐼 ⋀ 𝑊𝐽

𝑜𝑙𝑑) + (1 − 𝛽)( 𝑊𝐽
𝑜𝑙𝑑) 

(4-2) 

Fast learning occurs when 𝛽 = 1. 

Fuzzy ART then solves these two equations to find a category: 

𝑇𝐽 =
‖𝐼⋀𝑊𝐽‖

𝛼 + ‖𝑊𝐽‖
 

‖𝐷‖ =  ∑|𝐷𝑖|

 𝑚

𝑔=1

 

𝛼 ≤
1

𝑛 − 1
 

(4-3) 

Subject to vigilance: 

𝜌 ≦  
‖𝐼⋀𝑊𝐽‖

‖𝐼‖
 (4-4) 

When Fuzzy LAPART is presented a new input if both (4-3) and (4-4), then the 

preferred category is the max choice from (4-3).   

Fuzzy LAPART is a connection of two Fuzzy ART networks, with the ability to 

create new categories.  A diagram of the Fuzzy LAPART network is shown below. 
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Figure 4-1. Fuzzy LAPART in Learning Mode. 

When learning is not occurring, the B side reverses and a prediction is made based on 

the associator.  This prediction mode is shown below. 

 

Figure 4-2. Fuzzy LAPART in Prediction Mode. 

Four scenarios arise when the network is active.  They are listed below: 
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1. New A and New B categories;  Make new A and B categories.  Update the 

associator and weight matrix. 

2. New A and Old B categories;  Create new A category and select the max 

choice for the B category.  Update the associator and weight matrix 

3. Old A and New B categories;  This cannot exist because the associator already 

has an association to an existing B category.  Proceed as normal in step 1 by 

making a new A category. 

4. Old A and Old B categories;  Find the A category and see if it corresponds to 

a B category that also passes vigilance.  Proceed to the next passing A category 

and repeat.  If no category in B can be found that passes vigilance and is 

associated to a passing A category, proceed to step 1 by creating a new A and 

B category. 

The process then repeats for a new input or (4-2 is utilized for learning. 

4.3. Advantages of LAPART for SIMF 

A main advantage of LAPART for microforecasting is speed at which it converges.  

LAPART has no mathematical proof of stability as old input could theoretically 

continue to jump around in different categories.  LAPART 2 is a modified version of 

LAPART.  It creates a new A category during the second training input if the 

previously found A category is no longer the maximum choice and/or it no longer 

passes vigilance.   
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When utilizing LAPART2 the ANN provides a guaranteed two pass input 

representation convergence [201].  LAPART typically converges in two if not three 

passes, though as stated before, there is no convergence proof.  The speed at which 

LAPART learns is an incredible advantage to training in low power computational 

environments.  Often the number of backpropagation representations of other 

traditional supervised networks can reach into the thousands or more for relatively 

simple multilayer ANNs. 

When making output predictions, LAPART has the advantage of providing a max 

choice return always, weather it passes vigilance or not.  Even if LAPART does not 

have an officially converged answer, it can still provide an output prediction.   

Anomaly detection is another major advantage of LAPART and ART in general.  It 

was discussed earlier and is mentioned here to emphasize its importance.  It relates to 

the robustness of the network to be able to return an answer even if no official 

convergence is found.  LAPART can return an answer and utilizing the vigilance 

parameter, it also can quantify the degree of novelty of that solution.  This is a huge 

advantage over other ANNs.   



91 
 

5. Design Goals and SIMF Technology Solution 

Iterations from Visual to Far Infrared Photon 

Sensors 

It is important to have a concise and logical design goal before starting any project.  

The design goals for this SIMF project are listed below: 

1. An accurate prediction of a PV array output 30 seconds to 10 minutes into the 

future.   

2. A small (around one cubic foot) apparatus that is located at the PV site and 

looks at the sky and can see both the sun and surrounding clouds. 

3. An apparatus cheap enough to be adopted by utilities and as a secondary goal, 

cheap enough to be adopted by residential consumers for utility use.  At a 

minimum, the cost must be able to offset the operational values of the data it 

provides.  This is more likely to occur with utilities first. 

4. An apparatus that is highly reliable, will last 10 years, has minimal if any 

moving parts and requires little or no maintenance at all. 

5. An apparatus adaptable enough to be used anywhere in the world. 

6. An apparatus that learns and predicts better as more learning occurs. 

The design goals are presented in four sections to illustrate the temporal progression 

of the multiple hardware options that were utilized in each proof of concept.  Every 
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progression utilizes progressively lower energy photon sensors.  This progression is 

summarized in Figure 5-1. 

 

Figure 5-1, Technological progression summary by phase and working energies. 

The motivation for this progression toward lower energy wavelength sensors 

becomes clear when the entire range of the spectrum is utilized for an image.  This is 

especially apparent when image captures are needed near the sun. 

Review of Optical Problems Associated With 

Photographing Near the Sun as a Driving Technological 

Motivation 

Pixel saturation occurs when a photon detector is over activated by photons (typically 

of the sun) and the activated pixels begin to activate neighboring pixels also.  With 

older film cameras, the film was prevented from over exposing by restricting the light 
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input via an iris which constricted the radius of the lens.  Newer DSLR cameras 

sometimes utilize a physical iris but often they do not. 

In order to save money CCD or CMOS detector utilize a electronic shutter and no 

iris [202].  An electronic shutter is a sensor, typically CCD or CMOS for visual, with a 

filter in front of it to deaden the burden of the incoming photons.  The sensor acts 

with a quasi-photoelectric effect to generate a current.  Before the picture is made, 

the electronic shutter can turn up or down the sensitivity of all of the sensors.  This 

ensures that not too many pixels are too dark and not too many pixels are too bright.  

This methodology works well assuming the pixels will not be overloaded by an 

overwhelming signal, like the bright sun. 

If the sensor or film were only overloaded by one isolated signal, that may be fine as a 

strategy for image acquisitions.  Since the sun is only approximately 0.5° as viewed 

from earth, the sensor should only have a few overloaded pixels, in hypothesis.  In 

fact, pixel bleed over has an effect also, but the overwhelming problem that occurs 

when photographing the sun occurs with Rayleigh scattering.  Because direct 

radiation from the sun is so extremely intense, the scattering of light from particulate 

matter and molecules of air in the sky also saturates surrounding pixels.  However, 

Rayleigh scattering, depending on how far in angle it is from the sun can often be 

attenuated with the automatic shutter, physical shutter and/or iris.   

The problem of extreme dynamic range photographing near the sun was highlighted.  

Possible solutions to this photon energy dynamic range problem could include 
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filtering the images or taking multiple pictures from multiple cameras.  Or another 

idea would be to take multiple pictures with the same camera but with different 

automatic shutter settings.  This multiple high dynamic range picture acquisition is a 

feature of the Total Sky Imager. [154]  They also attempted to mitigate pixel 

saturation by painting the shadowband on the mirror.  However, we decided to move 

technologically to lower energy sensors.  This enabling technology was made possible 

around the year of 2017, by the introduction of the Flir Lepton© and the subsequent 

development of the breakout/interface hardware boards.  The temporal progression 

of the technology selection follows. 

5.1. Hardware and Apparatus Proof of Concept I, 

Visible Spectrum Sensors; 350-800 nm, 3.5-1.5 eV 

A main advantage to using simple CMOS cameras for SIMF is the cost of the 

technology.  Cell phone cameras are very cheap.  If costs were a main factor in this 

technological goal, cheap cameras may have been a better technology source.  

However, the functionality and inconsistency make them a sub optimal technology 

choice.   

Lens flare is another problem encountered with imaging the sun.  When multiple 

lenses are present and the camera is capturing a very bright object, the lens will often 

reflect a small amount of light.  This will appear in the form of a single dot for every 

reflection or large rings around the bright object.  An advantage to simple cameras is 
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the lack of multiple lenses, but all cameras with any lens suffer from lens flare 

problems. 

When investigation the use of cheap CMOS cameras, a cross spectral neutral density 

welding filter was applied to multiple pictures of the sun with surrounding clouds.  A 

sample of four pictures and the surrounding clouds taken with an inexpensive CMOS 

camera is shown below in Figure 5-2. 

 

Figure 5-2. Complementary metal–oxide–semiconductor (CMOS) pictures with neutral 
density filter welding filter #10 and #12 & #10 and #13. 

A methodology was to be utilized where two cheap shutter-less cameras take pictures 

through different opacity filters.  The two pictures would then be combined to create 

a high dynamic range picture.  From visual inspection, many cases it appeared that 

more than two pictures may have to be acquired.  One camera with a minimal filter 

could acquire images of the clouds away from the sun and one with a heavier filter 

would acquire images near the sun.  The decision was made to move to lower energy 

wavelengths. 
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5.2. Hardware and Apparatus Proof of Concept II, Near 

Infrared Sensors; 950-1,500 nm, 0.15-0.10 eV 1.3-0.8 

eV 

The visible spectrum has wavelengths from 350 to 800 nm.  However, CCD and 

CMOS sensors are sensitive to light outside of the visible range.  Though all sensors 

are different, Figure 5-3 below illustrates that the relative response of a Charged 

Coupled Device (CCD) camera slightly protrudes into the near infrared range.   

 

Figure 5-3. Charged Coupled Device (CCD) near-infrared relative response. 

The next step was to utilize a camera that was sensitive to near-infrared wavelengths.   

5.2.1. Near IR Experimental Apparatus, A 

The first experimental apparatus is show below in Figure 5-4. 
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Figure 5-4. A. Top Left/Right; Nikon D40 charged coupled device camera utilizing a 950 
nm long pass filter.  Facing directly at the sun, is a LI-200R Pyranometer for irradiance 

measurements.  B. Bottom right; shows an Eppley Laboratory solar tracker to track the sun.  
C. Bottom left, shows UNMs National Instruments NI-CompactDAQ chassis activation 
system to automatically take pictures of the sun and irradiance measurements at the same 

time at 10 second intervals. 

The experiment was located on the roof of the mechanical engineering building in 

Albuquerque, NM.  A Nikon D40 digital CCD camera with mechanical iris and 

mechanical shutter along with a 950 nm long pass filter was utilized.  Irradiance 

measurements were made with a LI-200R Pyranometer, which always pointed directly 

at the sun.  The tracking apparatus utilized was a repurposed Eppley Laboratory dual 

axis resetting solar tracker.  Lastly, the electronics and control module were in an 

IP66 waterproof metal housing.  The control module was built on a National 
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Instruments NI-CompactDAQ chassis with various modules.  It took pictures and 

logged irradiance consecutively in ten second intervals.   

The use of complex imaging equipment and continued lens flare problems made this 

technology impractical.  Though this experiment did not meet any of the design 

goals, it was utilized as a proof of concept for the utilization of near IR photographs 

for SIMF. 

Results obtained utilizing this data and the processing methods mentioned in the 

chapter Motivation for Accurate 2D Cloud Geometry;  below were published as a 

proof of concept at the 2013 IEEE Conference on Technologies for Sustainability 

(SusTech 2013) [6]. 

5.2.2. Near IR Experimental Apparatus, B 

Shortly after the construction of the first experiment, more research was done on the 

specifics of CCD and CMOS sensors.  Almost all common digital cameras contain a 

neutral density visible band-pass filter.  This filter significantly reduces the sensitivity 

of sensor outside of the visible range.  Specific camera modification options can be 

implemented on cameras, whereby that filter is removed replaced with a different 

optical material.  These filters typically come in two modifications, near IR sensitive 

and ultraviolet sensitive.  Each conversion replaces the bandpass visible filter with a 

long or short-pass filter, while still allowing some visible spectrum.  To highlight this 

conversion process visually, various photos are highlighted below in Figure 5-5.  

Photographers Andrew Steele and David (below) highlight photos taken with an 
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ultraviolet sensitive and near IR sensitive conversion, respectively.  Anthony 

Menicucci took the picture with the visible spectrum bandpass filter completely 

removed on a Sony Cyber-shot DSC-H2.   

 

Figure 5-5. Ultraviolet, near IR and raw sensor digital photography examples [203], [204]. 

Note, when the filter is removed the sensor appears to be most sensitive to red.  The 

second part of this near-IR sensitive experimental apparatus utilized a Nikon D-70 

converted to near IR sensitive by the Life Pixel Infrared company [205].  A 950 nm 

long pass filter was also utilized.  Dual camera sensitivity is illustrated in Figure 5-7 

below.   
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Figure 5-6. Different images of the sun and surrounding clouds.  A. Above, Nikon D40 
images.  B. Below, Nikon D-70 near IR sensitive conversion.  Both utilize a 950 nm 

bandpass filter and are contrast, brightness and sharpness enhanced. 

The problem of taking photos near the sun is apparent when they are contrast, 

brightness and sharpness enhanced.  Clouds near the sun are nonlinearly bright when 

compared to clouds radially further away.  When utilizing the near-IR sensitive Nikon 

D-70 camera the problem of lens flare is also apparent.  Lens flare occurs when a 
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small amount of light reflects onto the camera sensor from one of the many lenses.  

These artifacts are shown with green arrows in Figure 5-7. 

 

Figure 5-7. 950 nm Long Pass, near IR pictures taken with Nikon D70 on Feb. 7th, 2014.  
The green arrows point to lens flare artifacts that form in the optics. 

If the sky conditions were the same every day at every time, a mitigation strategy 

could include subtracting a reference photo.  However, all days and times do not 

present similar pictures, which makes implementation of a subtraction algorithm to 

reduce lens flare complex.   

One variable affecting the size and shape of the artifacts is exposure time.  Note the 

progressively larger flares as a function of exposure time in Figure 5-8. 
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Figure 5-8. Lens flare artifacts as a function of exposure time.  Nikon D-70, f/4 exposure 
time left to right; 1/100, 1/400 and 1/1250 s. 

There are new artifacts that appear when the exposure time is extended.  They were 

always there, but the extended exposure and near IR sensitive conversion, they then 

show up.  Note that the flare is not exactly in the center of the sun when the sun is 

not perfectly in the middle of the picture frame.  This would also affect a subtraction 

algorithm to filter out the lens flare artifacts.   

A proof of concept was analyzed with this data and published at the 2013 IEEE 

Conference on Technologies for Sustainability (SusTech 2013) [6].  Accurate particle 

image velocimetry measurements were needed for cloud fluid flow analysis.  This was 

almost impossible with lens flare distortion.  Pictures were acquired every 10 seconds 

and a subtraction algorithm was implemented with the following attributes: 

1. If both sequential images have irradiance above 800 W/m^2 proceed to step 

2. 

2. Subtract the images with the following equation. 

𝐼𝑠(x, y, z) =  𝑎𝑏𝑠(𝐼2(𝑥, 𝑦, 𝑧) − 𝐼1(𝑥, 𝑦, 𝑧)) 
(5-1) 

Where x and y are the location coordinates and z is the R,G,B red green and 

blue channels. 
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3. Lastly, the image pixel was thresholded to a maximum red, green and blue if 

all the channels exceeded a certain value. 

Below are three thresholded pictures that were utilized with a cross-correlation 

particle image velocimetry method to obtain average cloud velocities.  The subtracted 

images are shown in Figure 5-9.  The data-flag shown as a transparent green rectangle 

will be highlighted in the Motivation for Accurate 2D Cloud Geometry;  chapter. 

 

Figure 5-9. Particle velocimetry used on subtracted and thresholded pictures.  Each image is 
taken at a 10 second interval. 

The pictures in the top row are the originals and the bottom row contains the 

subtracted and thresholded images.  They were obtained 10 seconds apart.  Note that 

the last thresholded picture to the right fails in its algorithm.  Though both pictures 

making the subtracted image had current irradiances above 800 W/m2, the sun was 

occluded enough in the second one that the lens flare was not present in its average 

value.  Thus, the thresholding produced a large amount of noise.  These problems 



104 
 

and setbacks highlight a needed to move to a different technology for image 

acquisition.   

5.3. Hardware and Apparatus Proof of Concept III, Far 

Infrared Sensors; 8,000-12,000 nm, 0.15-0.10 eV 

In recent years, FLIR Systems has released the FLIR Lepton I and II modules.  It is a 

60 x 80 resolution long wave sensor sensitive from 8 to 12 µm that only costs around 

$200 per module.  This breakthrough in technology has provided the ability to make 

a cheap SIMF system using a long wave infrared sensor.  Since long wave infrared has 

a lower energy than visible or near infrared and therefore interacts less with 

particulates and air molecules, forward scattering around the sun is minimized.  

Examples of the Lepton module taken with the FLIR One and the raw sensor are 

shown below in Figure 5-10.   

 

Figure 5-10. Far IR pictures taken with the FLIR ONE on April 27th, 2015 (left) and May 
26th, 2015 (right). 
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The raw sensor modules shown in Figure 5-10 to the right is mounted to a stationary 

tripod shown in Figure 5-11. 

 

Figure 5-11. Stationary FLIR Lepton with breakout on tripod. 

The picture in Figure 5-10 on the left clearly shows the surrounding clouds with the 

sun as the white dot in the middle.  The picture on the right colored, in grey scale, 

shows an overcast sky.  The green arrow indicates a pronounced overheating in the 

sensor where the sun heated the pixels to a high temperature, and it remained hot 

after the sun moved.  This burn was mitigated later using a germanium external 

window.  The green arrow shows a spot on the camera where the pixels are not as 

sensitive as they should be.  It is not a dead spot but rather a less sensitive spot.   

Knowing that the dynamic range of far IR pictures is far smaller than that of the 

visible images, it was hypothesized that far IR pictures will yield better cloud 
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occlusion results due to better discernment of clouds from the sky with minimal 

forward scattering.  Also, clouds show up through a different mechanism.  Visible 

light in clouds is reflected, where IR light is mostly emitted by clouds.  Initial results 

confirm this.   

5.3.1. Far IR Tracking Experimental Apparatus, “The Dog 

House” 

The first experimental apparatus that was constructed to investigate far IR 

methodologies was colloquially named “The Dog House”.  This is because it looked 

like a dog house located on top of the UNM Mechanical Engineering building.  A 

CAD rendering is shown below with its various components. 
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Figure 5-12. CAD rendering of the Dog House experiment at UNM. 

It is approximately 3’ x 3’ x 6’ and made out of ¾” pressed particle board that is 

painted with a highly reflective weather resistant white paint.  A look inside is shown 

in Figure 5-13 below. 
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Figure 5-13. Internal components of the experimental apparatus. 

The purpose for the large size of the experimental apparatus was to facilitate other 

experiments into the future.  The dog house has the advantage of centrally locating all 

computer processing equipment physically close to the experiment.  This is 

advantageous because one can develop end-use product technologies with the native 

data transfer protocols while simultaneously harnessing the more powerful 

computing of a desktop or cluster computer.  SATA or Serial AT Attachment is one 

such protocol that degrades with cable lengths longer than three feet but is useful in 

end use programing.  The dog house offered the ideal testing environment for high 

computational power, large cheap computer memory availability and a dual end-use 

harsh external environment for testing product design temperature resistance and 

waterproofness abilities. 
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The far-IR experiment pan-tilt controller was controlled via a rugged version of an 

Arduino UNO microcontroller and a solid-state relay board.  All visual inputs from 

the sensors in the camera box were sent to the main desktop computer via a 

Raspberry Pi controller and temperature measurements were sent to the Arduino 

Uno inside of the dog house.  An externally mounted Li-Cor global irradiance sensor 

was also sent into the Arduino UNO.  At various times, it was advantageous to see if 

the camera box is moving when it is required to do so.  A clear 12” dome was 

installed revealing a tilted halfsphere viewing window shown in Figure 5-14.   

 

Figure 5-14. External Enclosure with the clear dome. 

The Li-Cor used was used for irradiance measurements.  It is shown below. 
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Figure 5-15. Externally Mounted Li-Cor global irradiance sensor. 

Matlab was the central controller for the Arduino UNO and Raspberry Pi.  Matlab 

also was utilized for all data processing.   

As the months progressed into June, it became clear that indoor desktop computers, 

located on black roofs, on sunny days, were computationally powerful, but needed 

active cooling.   

5.3.2. Far IR Tracking Experimental Apparatus, “The Cool 

Dog House” 

A 5,000 BTU 115-Volt window air conditioner was installed on the east side of the 

unit.  The cooling modification of course automatically renamed the experimental 

apparatus to, “The Cool Dog House”, as an actual dog would be quite happy living in 

its consistently cool 55° F environment.  The modification is shown in Figure 5-16 

below. 
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Figure 5-16. Modified experimental apparatus with 5,000 BTU cooling unit. 

Thought the air cooling unit cycled often, a temperature of 55° to 65°. F was 

maintained internally with no further complications.  A vent on the west side reduced 

the number of cooling cycles that the air conditioner would require per hour. 

5.3.2.1. Near and Far-IR Camera Box 

The camera box is a custom-built aluminum and 1” thick PVC enclosure with a 

removable top.  It is show below in Figure 5-17 and was designed to stay outside. 
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Figure 5-17. Camera Box containing the far and near-IR cameras. 

The apparatus uses a Pelco PT280 pan tilt unit with cylindrical coordinates.  The 

internal components are shown in Figure 5-18 below. 
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Figure 5-18. Internal components of the Camera Box. 

In trying to mitigate sensor heating effects and because of the sensor burn that was 

highlighted in Figure 5-10, this apparatus was equipped with a manual shutter and the 

germanium window was also removed to assess the raw sensor values unobstructed.  

The shutter was opened and then a capture was obtained from the far IR sensor.  

After, the shutter was closed to prevent the sensor from heating up.  A near IR 

CMOS sensor image was also obtained and installed to compare images.  Samples of 

these images are shown below in Figure 5-19. 
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Figure 5-19. A. Two, near infrared Complementary metal–oxide–semiconductor image 
(above) & B. series of nine far infrared images taken 10 seconds apart (below). 

This work proved that an effective solution for stopping sensor burn and confirmed 

the hypothesis that far IR wavelengths are preferable in reducing lens flare.  A new 
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apparatus that incorporated a full field sky view was hypothesized and created as a 

proposed deployable product.   

5.4. The Eight Sensor System, a Deployable Product, 

Proof of Concept IV 

With success utilizing the Dog House to obtain far IR images of the sun and 

surrounding clouds with minimal saturation and no lens flare, an eight sensors system 

was proposed.  By utilizing multiple views and stitching them together into one 

image, the pan tilt unit was removed.  This accomplished the goal of removing nearly 

all moving parts.   

By reducing overall mechanical movement, it was hypothesized that the system would 

increase in reliability.  The views were set in three equatorial planes instead of 

utilizing spherical, cylindrical or cartesian coordinates.  The mathematics of these 

transformations is in section 6.4 Mathematics of the Alignment of Flat Views 

Projected Onto a Flat Sky Plane.  Figure 5-20 shows the location of the eight sensors. 
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Figure 5-20. Outer shell location and labeling of all eight views in three equatorial planes 
labeled L0 through L7. 

The first equatorial plane contains the sensors L4 and L5.  It is closest to horizontal.  

The next two planes contain L6, L0 and L3 as well as L7, L1 and L2, respectively.  

The L7, L1 and L2 plane had each sensor rotated 90°.  The sensors are shown in 

Figure 5-21. 
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Figure 5-21. Location of each of the eight sensors, underneath the outer shell. 

The outer shell provided protection from the weather and germanium lens cavities 

were incorporated to provide an IR transmissible window.  The system was 

nicknamed “Ladybug” because of the spots the germanium windows created on the 

white outer shell, shown in Figure 5-22. 
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Figure 5-22. Initial fielded trials of the Ladybug upper apparatus system in the field. 

A 1/8” oring seal was added to the bottom of the outer shell on the next version of 

the Ladybug.  Window locks that encase the germanium windows with waterproof 

Loctite’s Marine Adhesive Sealant ensured waterproof operations for testing in 

intermittent rainy conditions.  Figure 5-23 and Figure 5-24 highlight the second 

version of the Ladybug in CAD. 
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Figure 5-23. Version 2 of the Ladybug system highlighting the window covers in silver. 

 

Figure 5-24. Rendered Ladybug Version 2 view of the apparatus with the views emerging 
from the individual windows shown as transparent glass. 
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It was assumed that the distance between far IR sensors was trivial compared to the 

distance to the cloud ceiling.  A minimum of a five degree overlap with all views was 

calculated.  Therefore, the views of the IR sensors do overlap at approximately the 

height of the cloud ceiling and exactly match a five degree overlap at infinity. 

The fielded version of the Ladybug is shown below in Figure 5-25, Figure 5-26 and 

Figure 5-27. 

 

Figure 5-25. V2 of the fielded Ladybug SIMF apparatus, View 1. 
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Figure 5-26. V2 of the fielded Ladybug SIMF apparatus, View 2. 
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Figure 5-27. V2 of the fielded Ladybug SIMF apparatus, View 3. 

Three units of the final V2 of the Ladybug were constructed and utilized for testing 

as part of a Small Business Innovation Research grant (SBIR, NSF 16-555).  All 

testing was done in Boulder Co. and is highlighted in the ‘8 Fielded System Results 

with Multiple Data Extraction Methodologies for the Neural Network’ section. 

This research has resulted in two US patents issued through STC, formerly known as 

the Science & Technology Corporation at UNM, US Patent 9,921,339 [206] and US 

Patent 10,345,486 [207]. 
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6. Data Aggregation and Pre-Processing on the 

Eight Sensor System, “The Ladybug” 

One of the design goals for a SIMF system is the placement of the apparatus in the 

middle of a PV field to obtain the best prediction results.  A Computer Aided 

Drafted (CAD) model of a PV field containing a SIMF system is highlighted in 

Figure 6-1, below.  The upper graphic highlights the unit in a sunny PV filed and the 

lower graphic shows the apparatus as a decision maker for alternative power 

generation resources. 
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Figure 6-1. SIMF Unit in the middle of a Sunny PV field (above) and shown as a decision-
making flow diagram (below). 

It is useful to show a perspective of the SIMF unit in the field as the unit views the 

sky and its surroundings. 
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Figure 6-2. On the ground SIMF perspective views in clockwise order from top left; A. 
NNW view, going left to right, showing the grey cloud, transmission infrastructure, onsite 

battery storage and onsite gas turbine generation (far right); B. NE view with same onsite gas 
generation;  C. SE view (lower left); and D. SW view of PV field and cloud (lower right). 

These views will help locate aspects of the following discussion. 

6.1. Cloud Ceiling Geometry  

The geometry of the views in the system relies on the assumption that the sky ceiling 

and cloud-cover are flat.  Therefore, the projection of the views of the Ladybug 

system onto the sky was assumed to be a flat plane projected onto a flat plane.  To 
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illustrate this projection a render of the Ladybug IR sensor apparatus is shown in the 

middle of a solar field with the L6 view turned on.  This is shown in Figure 6-3. 

 

Figure 6-3. Ladybug IR sensor apparatus with the L6 view shown for reference. 

The first flat plane mentioned was the flat plane projection of the camera view.  It is 

the only view shown in red in Figure 6-3.  The second flat plane is an assumption of 

cloud ceiling as a flat plane even though it is spherical.  Both are highlighted in Figure 

6-4. 
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Figure 6-4. Projection of the L6 view as seen from the Ladybug IR sensor apparatus. 

When all of the views are projected onto an assumed flat cloud plane, a montage of 

each view is assembled with overlapping regions.  A diagram of this view is shown in 

Figure 6-5. 
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Figure 6-5. Montage of each of the eight views from the Ladybug and their labels as seen 
projected onto a flat cloud ceiling.   

Several preprocessing steps were required including barrel distortion correction in the 

view itself and alignment of the system to the sky and the other sensors. 

6.2. Motivation for Accurate 2D Cloud Geometry; Data 

Selection with Velocity Gate (VG) Method 

Data selection was accomplished by making a series of progressive assumptions 

about the input space.  The first assumption that was highlighted before, was that the 

cloud ceiling was assumed to be flat.  It was also assumed the cloud vector field was 

relatively constant in the near term and can be extracted from a series of past sky 
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images taken at set intervals like every ten seconds.  A diagram of a hypothetical sky 

image with the cloud vector field is shown below. 

 

Figure 6-6. Sky image with cloud velocity vector field. 

Since the vector field and surrounding clouds near the sun are more relevant data for 

SIMF, it is assumed than an average velocity can be extracted from the flow field near 

the sun.  This extraction of data highlighted in Figure 6-7. 
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Figure 6-7. Radius of assumed relevant cloud vector flow data near the sun. 

A radius is drawn around the sun, and velocity vectors within that region are used to 

estimate an average velocity.  This is shown in Figure 6-8. 
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Figure 6-8. Average cloud flow field velocity near the sun. 

It was assumed that the average cloud flow field velocity was a representative 

measure of expected cloud movement and future PV field occlusion events.  It was 

further assumed that clouds are geometrically invariant in the near term, within the 

flow radius around the sun.  For ease of calculation and for visualization purposes, 

the sky image is rotated about the sun center, so the average velocity is in line with 

the positive x axis, as is shown in Figure 6-9. 
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Figure 6-9. Data rotated about the sun center. 

Once the average velocity is known and the image is rotated in line with the flow 

field, a region of interest called a Velocity Gate (VG) can be formed also.  The VG is 

a section of sky, evenly spaced about the X axis, that is a distance equivalent to the 

velocity of clouds in pixels/frame multiplied by the number of frames equivalent to a 

prediction of future irradiance.  If frames are acquired every ten seconds, the number 

of frames for a five-minute prediction would be 30, or five minutes times 6 frames 

per minute.  The resulting distance gives the center location of the VG on the X axis.  

This concept is shown in Figure 6-9, above. 

As general principle, any reduction of the number of superfluous inputs in any data 

set is useful to obtaining better outcomes.  The VG methodology was employed to 

reduce the data for LAPART from the entire sky, to a small and systematic region, 

know as the VG.  When referring to the VG, the region of influence along the X-axis 

was termed the data flag and is shown in Figure 6-10, below. 
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Figure 6-10. Projected path of the clouds across the sun in the direction of velocity. 

The data flag width is the size of the VG.  The data for LAPART has been first 

reduced form the entire image of the sky which contain tens of thousands of pixels to 

only the image of the that falls under the 20 by 20 pixel VG region.   

The motivation for accurate cloud geometry was highlighted in the need for accurate 

velocity vectors.  By projecting the clouds into the sky onto an idealized flat plane 

accurate cloud motion can be obtained.  This was the basis for our preprocessing 

algorithm known as the VG method. 

6.3. Barrel Distortion Correction 

Barrel distortion was reported from the manufacture data as 7.5%.  Barrel distortion 

is the image distortion that occurs from a spherical lens projecting light onto a flat 

sensor plane.  An example of this distortion is shown in Figure 6-11 below.  The 
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original image contained parallel and perpendicular lines, but when the light enters 

the conical lens it is distorted, making parallel vectors bowed, resembling a barrel. 

 

Figure 6-11. Barrel distorted picture of a parallel lines in an original image. 

Matlab was employed with the equation LENSDISTORT on all eight views before 

they were aligned to the sky.  LENSDISTORT was not validated or verified for 

accuracy. 

After the barrel distortion was removed from each view, the views were then ready to 

be projected onto the idealized flat cloud ceiling in the sky.  At this stage, they are 

also ready to be aligned to the sun position and each other.  An example of the 

distortion correction is shown in Figure 6-20, below. 
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6.4. Mathematics of the Alignment of Flat Views 

Projected Onto a Flat Sky Plane 

Since the sun moves in an equatorial pattern, an equatorial coordinate system was 

employed.  This simplified the mathematics by enabling only rotations about axes of 

unit vectors and precluded the need for any additional projections. I.e. no projection 

of the unit vector was required when rotating each of the coordinates into each other 

as would be required with spherical or cylindrical coordinates.   

A sextuple rotation with local and global coordinates was employed.  The main 

reason this was done was so pre-written Matlab algorithms could be employed, easing 

the programing required.  The mathematics of the projections is shown below. 

The coordinate transformation starts by aligning the X-axis in red, to North by 

rotating the Y-axis in green, straight up.  The rotation is about the Y axis shown in 

Figure 6-12, below.  When talking about the X,Y,Z axis, these are shown in red, green 

and blue, respectively.  
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Figure 6-12. T1 rotation in Y to align the coordinate system South. 

𝑇1 = [
cos(𝜃1) 0 − sin(𝜃1)

0 1 0
sin(𝜃1) 0 cos(𝜃1)

] (6-1) 

Where θ1, ideally = 180°.  A rotation was then employed to tilt up into the sky 

looking up from the ground.  The X-Z plane, in red-blue, forms an equatorial plane.  

When the tilt angle up from the ground is set to the sun elevation a rotation about 

the Y axis again points directly at the sun.  These two rotations are shown in (6-1) 

and (6-2) as well as Figure 6-13 and Figure 6-14. 
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Figure 6-13. T2 rotation about the Z axis. 

𝑇2 = [
cos(𝜃2) sin(𝜃2) 0

−sin(𝜃2) cos(𝜃2) 0
0 0 1

] (6-2) 

The rotation about the Y axis is shown below.  
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Figure 6-14. T3 rotation About the Y axis pointing to the center of the views. 

𝑇3 = [
cos(𝜃3) 0 − sin(𝜃3)

0 1 0
sin(𝜃3) 0 cos(𝜃3)

] (6-3) 

A view is placed on the coordinate system to illustrate the center as shown in Figure 

6-15.  Another local coordinate system is used to rotate the view locally also shown in 

Figure 6-15.   
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Figure 6-15. Local coordinate system placed on the global system. 

The view to the left shows the local coordinate system in line with the global 

coordinate system.  If the sensor is not seated properly, it may be rotated about the 

view normal as shown to the right. 

It was assumed that each view is uniform when they were manufactured.  It was then 

assumed that the location of the window can be rotated in all three axes and the view 

from the sensor would remain constant from the manufacture.  Figure 6-15 shows a 

fourth rotation, that represent the sensor being rotated in line with the normal. 

The mathematics are shown in (6-4). 

𝑇4 = [

1 0 0
0 cos(𝜃4) sin(𝜃4)

0 − sin(𝜃4) cos(𝜃4)
] (6-4) 

Where θ4 ideally = 0.  Use of the Matlab function, projective2D, performed the 

projection of the view onto a theoretically flat cloud-plane.  The function rotates the 
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four corners of a picture to four geospatial locations on the sky.  Therefore, the last 

two rotations needed are to find the corners of the view.   

The vertical rotation of the local coordinate system is about the Z-local axis and is 

shown below in Figure 6-16. 

 

Figure 6-16. Vertical rotation of the local coordinate system about the local Z-axis.  L0 is 
also shown. 

𝑇5 = [
cos(𝜃5) sin(𝜃5) 0

−sin(𝜃5) cos(𝜃5) 0
0 0 1

] (6-5) 
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θ5 ideally = +,-; half of the vertical view angle.  This locates the left and right edges 

of the view.  The last rotation is about the local Y-axis.  It is shown below. 

 

Figure 6-17. Horizontal rotation of the local coordinate system about the local Z-axis.  L0, 
L3 and L6 are shown. 

𝑇6 = [
cos(𝜃6) 0 −sin(𝜃6)

0 1 0
sin(𝜃6) 0 cos(𝜃6)

] (6-6) 

Where θ6 = +,-; half of the horizontal view angle.  The final projections of the 

corners are shown in Figure 6-17.  Note that L0, L3 and L6 are all shown. 
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A final rendering of all eight views located in the middle of a PV field is shown in 

Figure 6-18, below. 

 

Figure 6-18. Final rendering of all eight views shown in yellow. 

The final corners of each view were calculated with (6-7). 

𝑅𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 = 𝑇6 [𝑇5 [𝑇4 [𝑇3 [𝑇2 [𝑇1[𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙]]]]]] (6-7) 

To summarize, the first three rotations project the view into the sky at the 

appropriate equatorial level.  When these rotations are applied, the view is centered 



143 
 

directly normal to the flat surface plane of the ladybug shown in Figure 5-24 and 

Figure 6-3.  θ4 rotates the sensor about the normal axis to account for rotational 

errors of the sensor when it is installed onto the ladybug frame.  θ5 and θ6 rotate 

left/right and up/down, respectively, to locate individual pixels in each view. 

The sun position is directly calculated in the picture from elevation and azimuth, 

which are both functions of time of day, day of year, latitude and longitude.   

6.5. Alignment of the System to the Sky  

To align the system to the sky, the L0 center view’s T1 rotation to that apparatus is 

assumed to be exactly 180°.  It is noted that T1 and T3 are both rotated about the Y-

Axis.  Since combinations of the X, Y, and Z axis rotations can reconstruct any 

projection into a 3-Dimensional space, T4 is used as the third coordinate in space to 

initially align the system to the sky.  What results is a calculated projection of where 

the sun should be in the L0 view versus the actual sun.  The sun location is found 

during high irradiance times from the pixels that are fully saturated.   

With the above assumptions, the alignment process of the L0 view, which is assumed 

to be the structural apparatus alignment to the sky, requires the following parameters. 

1. A minimum of three sample of the sun located in the L0 view are required. 

2. Alignment accuracy improves when samples of the sun are as far away from 

each other, while still located within the L0 view. 
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3. A distance is calculated, in number of pixels, that locate the actual sun relative 

to the calculated sun center. 

4. Alignment errors from geospatial differences in assuming the cloud plane is 

flat as opposed to spherical are minimized by picking times equally on both 

sides of solar noon. 

A Visual example of this process are shown in the figure below. 

 

Figure 6-19. Two times of the day highlighting the actual sun shown in blue and the 
calculated sun highlighted with the circular target. 

The sun actual position was calculated with a thresholding process where pixels 

above a threshold were considered to calculate the sun.  The alignment process is as 

follows: 

1. θ1, θ2 and θ4 are slightly varied from their ideal angles in a random order 

during each alignment step.   

2. The distance between the two sun positions is calculated and averaged. 
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3. If the distance decreases, the new θ1, θ2 and θ4 values are set as the updated 

alignment values. 

4. Processes 1-3 repeated until the distance is minimized. 

After this process, L0 and the structural apparatus is considered aligned to the sky.  

The stitching of L1-L7 with L0 and their subsequent alignment to the sky, follows. 

6.6. Stitching of Eight Sensors Together and Alignment 

of Other Sensors to the Sun 

Figure 6-20 shows the raw output of the views in reverse, i.e. the views look up from 

the ground and not from an astronaut’s view, looking down from orbit. 

 

Figure 6-20, Raw output of the views in approximate orientation. 
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In Figure 6-19. all the views are shown in their equatorial transformations.   

 

Figure 6-21, A reproduction of Figure 6-19 highlighting the inaccuracies of the aligned L1-
L7 views. 

The total alignment process is highlighted in the two methods highlighted above. 

6.6.1. Alignment process of Sensors with each other 

Overlapped regions are shown in Figure 6-21.  These regions are used to calculate a 

stitching algorithm with the following assumptions. 

1. Individual sensors have their own manufacturing defects that systematically 

alter individual pixel responses.  A function called the Far Field Correction on 

the sensor itself normalizes all pixels to a closed shutter.  Though the offset of 

each pixel is now uniform relative to the sensor, the total offset of the sensor 

itself is mainly temperature skewed and varies between sensors.  It was 

assumed that the offset of each sensor, once corrected with the Far Field 
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Correction, is an offset that can be calculated by comparing pixel values of 

different sensors viewing the same object. 

2. It is assumed that the range of pixel response of each sensor is different from 

sensor to sensor but uniform across individual sensors. 

With the above assumptions, a similar process was employed to align the views with 

each other as was the process to align the sun to the view.  The process is the 

following: 

1. L1 and L3 were already calculated and their offsets are incorporated into the 

projection calculations of all views. 

2. L3 was known and used to set the theoretical overlap region of each sensor 

with θ3 = 0 for L0. 

3. θ4 – θ6 were then varied randomly around their current values for views L1-

L7. 

4. The standard deviation and average of each overlap region relative to L0 was 

used to normalize the non L0 view to the L0 view.  This was accomplished by 

utilizing L0 as the reference average and reference standard deviation.  The 

other view was systematically offset and then multiplied by a percentage so 

that standard deviations of the overlap region match to the L0 region. 

5. The average error between the different overlap regions was calculated by 

taking the absolute value of the difference in pixel intensities that overlap each 

other and dividing by the number of pixels.  This average difference was used 
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to update the θ4 – θ6 values of the L1-L7 sensors if #6 and #7 also passes.  If 

the average error value with the different random rotations of each overlap 

region is lower than before, the new values were used as the new random 

offsets for each sensor individually, again assuming #6 and #7 holds. 

6. The difference between the overlap regions with each other sensor not 

including L0 was calculate.  For example, L4 overlaps with L5.  If the average 

error between views L1-L7 and their overlap regions reduces, #7 proceeds. 

7. If the sun is in one of the L1-L7 views, an additional step is required before 

the determination is made to update the values.  This step is highlighted in the 

chapter ‘Alignment of Non-L0 Sensors’, below. 

If each sensor had the same range, average pixel response and their geometries 

aligned with each other, the theoretical error should drop to zero.  If the total error 

between all sensors slows to a threshold, the new values are accepted  

6.6.2. Alignment of Non-L0 Sensors 

The alignment process of non L0 sensors that also incorporate the sun is listed 

below: 

1. Since the variation in angles is already made, the distance between the two sun 

positions is calculated and averaged. 

2. If the distance lowers, this process is considered complete and fulfills the 

requirements of the alignment of the L1-L7 sensors. 
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This alignment process is like the alignment of L0 with the sun, where the view 

angles are varied to match the sun position. 

Figure 6-22 shows two fully stitched images of the sky. 

 

Figure 6-22. Two full sky-views highlighting fully stitched images with mean pixel intensity 
adjustment and normalization to the standard deviations in the overlap regions of L0. 

Note the lower half of the stitched images shows the raw pixel values.  Though there 

are still some discrepancies between views, the stitching algorithm produces data that 

is nearly seamless.  The sun is also shown, highlighting the pixel values that can be 

used above a threshold value to locate the sun center. 

The importance of accurate cloud velocities was highlighted as the motivation for 

precise image stitching.    
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7. Verification and Validation of LAPART 

The Defense Advanced Research Projects Agency (DARPA) set two benchmarks for 

the validation of a similar form of LAPART know as Fuzzy ARTMAP. [196] [208]  

The benchmarks were to identify both a circle in a box and a more complex 

benchmark, identification of two interwoven black and white spirals.  The 

methodology of identification of the two spirals was to provide a non-linear and non-

systematic problem for the parsing of distinct categories of the neural network.  A 

similar methodology to validate LAPART was formed and explained below. 

Verification and Validation of LAPART with a Non-

Systematic and Non-Linear Dataset 

To validate LAPART was functioning correctly, an image [209] of a microscopic skin 

cell was processed through LAPART to reconstruct the original picture.  The A and 

B-side input space are shown in Figure 7-1 and Figure 7-2 below.  In the cartesian 

preprocessing method the A-side inputs were the x and y normalized location of the 

red, green and blue pixels.  The origin was the upper left-hand corner.  The A-side 

inputs of the cylindrical preprocessing method was the normalized radius and angle 

of the red, green and blue pixels.  The origin is the center of the image. 
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Figure 7-1. Non-systematic input space for Verification and Validation of LAPART, inspired 
by biology, processed in cartesian coordinates. 

 

Figure 7-2. Non-systematic input space for Verification and Validation of LAPART, inspired 
by biology, processed in cylindrical coordinates. 
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In order to validate LAPART was classifying correctly, the Root Mean Squared 

(RMS) error, as defined in (8-1) for a single input, was utilized in the 

multidimensional space as a measure of accuracy.  Both 𝜌𝐴 and 𝜌𝐵 were varied 

together from 0.5 to 0.9 and 0.95.  The number of categories on the A and B side 

were recorded and the RMS error of the color reconstruction was also recorded and 

is shown in Table 7-1 and Table 7-2 below. 

 

Table 7-1. Accuracy and classification error of LAPART as a function of A&B ρ inputs in 
Cartesian coordinates. 

 

Table 7-2. Accuracy and classification error of LAPART as a function of A&B ρ inputs in 
Cylindrical coordinates. 

Rho A Rho B
Num. A 

categories

Num. B 

categories

Average RMS 

Error

0.5 0.5 45 12 73.25

0.6 0.6 73 15 70.44

0.7 0.7 145 22 72.82

0.8 0.8 467 42 72.43

0.9 0.9 2743 128 64.06

0.95 0.95 13665 508 37.07

Cartesian Coordinates; LAPART Classification and Accuracy as a 

function of Parameters

Rho A Rho B
Num. A 

categories

Num. B 

categories

Average RMS 

Error

0.5 0.5 27 8 63.89

0.6 0.6 59 15 64.05

0.7 0.7 115 22 70.21

0.8 0.8 365 39 77.07

0.9 0.9 2050 145 68.38

0.95 0.95 10921 515 44.98

Cylindrical Coordinates; LAPART Classification and Accuracy as a 

function of Parameters
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“Robust Returns” was a function written to modify the Fuzzy LAPART to ensure a 

prediction was made.  Instead of failing when a category is not found, the function 

returns the max choice whether it passed vigilance or not.  This function was 

employed to ensure a B-side prediction was always returned. 

In both cylindrical and cartesian coordinates, the RMS error was reduced when the A 

and B rho parameters were increased.  This was expected of LAPRT and of other 

neural networks that are functioning correctly.  Since the accuracy of LAPART was 

the parameter analyzed, the time to run and train each of the scenarios was not 

analyzed.  In both preprocessing methods, there was a local minimum of error 

around A and B rho of 0.6 and 0.7 even though the overall error went down.  This 

would suggest the ability of LAPART to classify well before it overclassifies by 

memorizing. 

Of note are the input pre-processing parameters that construct the A-side input 

space.  Since a cell is a relatively round object and the image was constructed with the 

main features centered, the expected output would result in a larger number of A side 

categories in the cartesian input relative to the cylindrical coordinate system 

preprocessing.  This was shown as the number of A-side categories formed for the 

cartesian coordinate system preprocessing was consistently 50% to 20% higher than 

the number of A-side categories formed for the cylindrical coordinate system.  

Consistent with the formation of the B-side color pallet, the number of categories 

formed for both the cartesian and cylindrical coordinate systems preprocessing was 
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relatively the same.  Both the increased number of A-side categories in the cartesian 

preprocessing system and the relatively similar number of B-side categories for the 

color pallet for both preprocessing methodologies was consistent with a functioning 

and operative neural network. 

Lastly, the human brain inclusive of the visual perception system should be able to 

perceive an increase in the accuracy of the images reproduced by LAPART.  These 

reproductions are shown below in Figure 7-3 and Figure 7-4 for human visual 

observation. 

 

Figure 7-3. B-side image reconstruction of the original LAPART A-side inputs in cartesian 
coordinates by rho value. 
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Figure 7-4. B-side image reconstruction of the original LAPART A-side inputs in cylindrical 
coordinates by rho value. 

Persistent to a neural network that learns and becomes more accurate, LAPART has 

shown that both images were reconstructed closer to the original image as both 𝜌𝐴 

and 𝜌𝐵 were increased closer to unity, despite the local minimums. 
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8. Fielded System Results with Multiple Data 

Extraction Methodologies for the Neural 

Network 

A Small Business Technology Transfer Grant (STTR I NSF 16-555) was submitted in 

collaboration with Micro Grid Labs (MGL) and the University of New Mexico 

(UNM) to develop a forecasting methodology based on the aforementioned 

algorithms and technology.  Fielded trials were conducted in Boulder Co. and at the 

University of New Mexico’s Center for Emerging Energy Technologies (CEET) 

microgrid in Albuquerque.  A table of all the days and times used from Boulder, Co. 

is listed in Appendix C. 

8.1. LAPART Inputs 

An outline of LAPART and the inputs and outputs during the training and testing 

methodologies follows.  During the training stage of LAPART, the A-side input was 

the VG data pixel intensity at time t and the B-side input is the irradiance at time t + 

Δt, where Δt is the prediction time horizon.  Therefore, training is delayed until the 

actual irradiance in the future is known.  This process is shown in  

Figure 8-1 below. 
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Figure 8-1. Training in LAPART for SIMF. 

When LAPART is in testing or prediciton mode the same VG input are fed into the 

A-side of the network.  However, the B-side of LAPART predicts the irradiance 

output at time Δt from the association of the hyperbox linked to the A-side input.  

This process is shown in Figure 8-2 below. 



158 
 

 

Figure 8-2. Testing (prediction) in LAPART for SIMF 

In the testing scenario, the associator is not updated with the learning implementation 

until after the irradiance is known and or there is enough computation time for the 

learning process. 

8.2. LAPART Error Definitions 

LAPART is an associatorf  that connects hyperboxes of A-side inputs to B-side 

inputs with laterally weighted connections.  This is shown in Figure 8-3 below. 
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Figure 8-3. LAPART predictive model learning of lateral weighted connections between 
hyperboxes.   

In the example above, the A side network has two inputs and so does the B-side.  

However, when applied to SIMF, the A side inputs are four hundred long and the B-

side is only 1 inut long.  This is shown in Figure 8-4 below. 

 

Figure 8-4. SIMF A and B-side inputs for LAPART. 
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The pixel intensities are associated on the A-side of LAPART and the irradiance is 

associated on the B-side.  In the example above, the B-side irradiance hyperbox 

contains a range of irradiance values in which the associator might link to.  When 

LAPART is in testing and an association is found that links to a known hyperbox, the 

prediction is considered a succes.  This is shown in Figure 8-5, below. 

 

Figure 8-5. Successful LAPART prediction to know irradiance category. 

Since the B-side category is known and the irradiance is within the bounds of the 

category, the prediction error can be considered to be the size of the category itself.  

In practice, the RMS error was always calculated from the center of the category no 

matter what the irradiance actually was.  This error analysis is shown in Figure 8-6, 

below. 
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Figure 8-6. Incorrect irradiance prediction by LAPART. 

In all cases, an RMS error was constructed from the center of the B-Side irradiance 

prediction category to the actual irradiance in the future. 

8.3. Data Flag Methodology 

Data extraction for any neural network relies on limiting the input space to the 

minimum necessary information.  This is done for two reasons: 

1. LAPART and any neural network will learn faster when the input is limited in 

size to the essential information necessary to form a correlation relationship 

between the A-Side and B-side inputs. 

2. LAPART and any neural network will form less association between A-side 

data that may be correlated but provides no cause and effect relationship to B-

side data.  Learning any superfluous A-side data can confuse the network by 
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overlearning associations that are not present in a cause and effect relationship 

to B-side inputs. 

This principal was adopted, and the data flag was formulated to limit the input space.  

Take for example Figure 8-7, shown below.   

 

Figure 8-7. Data Flag example to limit the input space. 

It contains cloud data, but only the clouds that are under the data flag will intersect 

the sun.  Note that the picture is large compared to the data flag that contains the 

relevant data.  The VG method was formulated as an initial means to further reduce 

the input space and is explained below. 

8.4. Velocity Gate Method Error Analysis 

The VG method utilizes the current cloud velocity in pixels/frame to construct a 

window of A-Side inputs over the data flag.  Figure 8-8 shows an example of this 

calculation.  This method experiences error when accurate cloud velocity 

measurements are not utilized.  The VG location is calculated by multiplying the 

velocity of the clouds in pixels/frame by the number of frames, thus if inaccurate 
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velocity measurements are used, the VG will not accurately contain the proper sky 

patch.  A padding could them be applied on both sides typically equal to half of the 

width of the Data Flag to account for inaccuracies in the velocity measurements.   

 

Figure 8-8. Velocity Gate Example shown for Boulder Colorado.  The velocity for this 
example is assumed to be 4 pixels per frame predicting 6 frames into the future.  The Data 

graph show the normalized value of each pixel. 

As is the case in Figure 8-8, the sun is centered at coordinated (10,10) in the Data 

Flag.  Assuming a 6-frame prediction and a velocity of 5 pixels/frame the left and 

right coordinates of the VG are 30 and 50 pixels.  The VG then contains a 20 x 20 

swath of date.   

The input to LAPART was a 1X400 swath as shown in Figure 8-9.  
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Figure 8-9. Data processing example for a 1x400 total swath of data for the A-Side input to 
LAPART. 

Error analysis for the VG method comes in the form of heuristic observations of 

inaccurate average cloud velocity measurements.  If the velocity is not correct, then 

the VG will not be placed in the correct location in the data flag area. 

8.5. Correlation of VG Pixel Intensity and Future 

Irradiance 

In ideal circumstances the pixel intensity should be directly correlated to irradiance.  

However, in practice it was not.  This was likely due to internal functions on the 

firmware of the sensor itself that systematically altered its output higher or lower 

based on several known outside factors.  This was also the reasoning behind the 

stitching algorithm that was employed.  An example of this problem is highlighted in 

Figure 8-10 below.  It illustrates how similar irradiances correlate to different sensor 



165 
 

output ranges.  In all data collection scenarios, data was obtained in 10 second 

intervals. 

 

Figure 8-10. Visualization of date sensors mapping to artificially higher or lower irradiance 
predictions. 

To quantify this problem, the averaged and normalized pixel intensity for the VG was 

plotted against the normalized future irradiance for a 120 second prediction.  The 

first seven days of the fielded trials were plotted in Graph 8-1, with different colors 

for each day, for Boulder, Co. 
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Graph 8-1, Normalized and averaged velocity gate pixel intensity vs 120 second normalized 
irradiance. 

Graph 8-1 illustrates there is no multi-day correlation between VG pixel intensity and 

future irradiance.  It is hypothesized from the observation of Figure 8-10, that the 

temperature of the sensor may have some effect on the output reading.  Due to visual 

inspection of data variability between days, no correlation analysis was completed on 

Graph 8-1, as none exists.   

The VG A-Side pixel data inputs were then scaled from 15,000 to 45,000 the 

irradiance was scaled between 200 and 1200 W/m2.   
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8.6. Examination of the Correlation Between Uniform 

Velocity Gate Conditions and Future Irradiance 

Since the total VG was averaged in Graph 8-1, it was assumed that nonuniformly 

cloudy conditions could exist.  For example, a cloud could be located half in the VG 

and the other half could be clear sky as is illustrated in Figure 8-8.  To examine a 

relationship where only clouds or only clear sky exists in the VG, the standard 

deviation (SD) was calculated for all of the VG data points.  In all scenarios, the VG 

consisted of 20*20 = 400 total pixel data points.   

In all data collection scenarios, larger VG values correspond to lower irradiance 

values.  This was highlighted in Figure 8-8.  The lower the value of the VG pixels the 

higher was the projected irradiance.  This assumes ideal conditions, uniform sensor 

firmware data acquisitions and constant environmental conditions.  This correlation 

was opposite from the older style sensors that correlate larger pixel values with lower 

irradiance values.  The following scenarios limited the normalized VG SD to less than 

0.02 when specified.  This was done to investigate different correlations between VG 

pixel values and future irradiance, on individual days, with fixed firmware 

initializations. 

Graph 8-1 was replotted as Graph 8-2 with the restricted normalized VG SD 

parameter being set to less than 0.02. 
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Graph 8-2. Normalized Averaged Velocity Gate Pixel Intensity vs. Normalized Future 
Irradiance (120 s.); Filter out SD>0.02. 

The dates of 3/31/2018 and 4/9/2018 highlighted again the nonlinearity of the 

correlation between pixel intensity and future irradiance.  On date 4/9/2018 

normalized future irradiance is bifurcated into two ranges.  The first group is shown 

with normalized future irradiance near zero.  The second group is in the middle with 

normalized future irradiance values between 0.3 and 0.5.  These two groups were 

encircled in gold.  The date of 3/31/2018 exhibits multiple outliers in four clusters, 

all of which were encircled with blue.  The outliers for that date, both above and 

below, showed that the correlation does not hold. 
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Analysis of the remaining dates provided more favorable results.  In general, the 

correlation is negative and showed that as the average VG values decrease, the 

irradiance increases.   

To investigate the overall correlation of normalized future irradiance and normalized 

average velocity gate values the first seven days of data were plotted in Graph 8-3. 

 

Graph 8-3. Normalized Averaged Velocity Gate Pixel Intensity vs. Normalized Future 
Irradiance (120 s.); Filter out SD>0.02. 

A linear interpolation was applied and an R-squared value of 0.142 was obtained.  

Thought the trend was generally linearly decreasing, as was to be expected, the R-

squared value proves little correlation between normalized future irradiance and 

average VG pixel intensity. 
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It was hypothesized that as the sun crosses the sky and passes into the view of 

different sensors, errors may occur due to the different firmware settings in the 

individual sensors.  To investigate this hypothesis, two days were plotted individually.  

The data set was further restricted to a timeframe when the sun was in only one 

sensor.  These are shown in Graph 8-4 and Graph 8-5 below. 

 

Graph 8-4. Normalized Averaged Velocity Gate Pixel Intensity vs. Normalized Future 
Irradiance (120 s.); Filter out SD>0.02 & on 4/10/2018 Boulder Co. between 15:15 and 

17:00 MDT; with the sun only in L3. 
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Graph 8-5. Normalized Averaged Velocity Gate Pixel Intensity vs. Normalized Future 
Irradiance (120 s.); Filter out SD>0.02 & on 4/2/2018 Boulder Co. between 12:05 and 14:30 

MDT; with the sun only in L0. 

The R-squared values greatly improved but remained suboptimal.   

To furthered highlight these disjoint correlations, the normalized average VG pixel 

intensity was plotted with the normalized future irradiance.  They are shown below in 

Graph 8-6 and Graph 8-7 for specific dates and times when the sun is only in one of 

the sensors.   
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Graph 8-6. Normalized Averaged Velocity Gate Pixel Intensity (left) & Normalized Future 
Irradiance (120 s.) (right) vs. frame acquired (10 sec.); Filter out SD>0.02; on 4/10/2018 

Boulder Co. between 15:15 and 17:00 MDT; with the sun only in L3. 
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Graph 8-7. Normalized Averaged Velocity Gate Pixel Intensity (left) & Normalized Future 
Irradiance (120 s.) (right) vs. frame acquired (10 sec.); Filter out SD>0.02; on 4/2/2018 

Boulder Co. between 12:05 and 14:30 MDT; with the sun only in L0. 

In two scenarios with different days, the correlation between normalized VG pixel 

intensity and normalized irradiance can be opposite or at a minimum actively 

changing throughout the day.   

8.7. Error Analysis Definitions 

Root Mean Square (RMS) error was calculated by taking the average of the B-Side 

irradiance prediction output and comparing it to the actual irradiance realized in the 

future.  The RMS error is defined as follows: 
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𝐸𝑅𝑀𝑆 = √
1

𝑛
(𝑥1

2 + 𝑥2
2 +∙∙∙ +𝑥𝑛

2) (8-1) 

However, the B-Side data is one dimensional.  With SIMF average B-side categories 

from LAPART being one dimensional, the formula reduces to the absolute value of 

the error from mid category, derived below. 

𝐸𝑅𝑀𝑆  =  √
1

𝑛
(𝐼𝐵 − 𝐼𝑡+𝑃.𝑇.𝐻.)

2  =  |𝐼𝐵 − 𝐼𝑡+𝑃.𝑇.𝐻.| (8-2) 

Where IB  =  IrradianceLAPART B−Side Prediction  and It+P.T.H. =

 Irradiancetime+ Prediction Time Horizon 

8.8. Velocity Estimation for the Velocity Gate 

Placement on the Data Flag 

PIV-Lab [210] was utilized to make a map of velocities of clouds relative to position.  

A search radius of 140 pixels around the sun was specified and only velocities in that 

radius were averaged for the data flag and VG.  This is illustrated in Figure 8-11 

below. 
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Figure 8-11. PIVLab velocities as calculated near the sun. 

All velocities that were not a minimum of 1.75 pixels/frame were discarded.   

In order to parse better velocity vectors, a strategy was derived to grade the cloud 

movement vectors.  The steps are as follows: 

1. A list of all vectors inside of the sun-radius was compiled for every frame.   

2. The percentage of vectors that have pixel lengths greater than 1.75 was 

obtained.   

3. A grade was assigned to all frames based on the number of vectors longer 

than the 1.75 pixels per frame value.  Some of the small, non-passing vectors, 

can be seen on the left side of the sun, within the sun-radius, shown in Figure 

8-11.   

4. The X and Y components of vectors that pass and are in the sun-radius are 

averaged utilizing a running average.  The value of the running average was 
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taken from the grade assessed previously.   These grades and corresponding 

running averages are shown in Table 8-1.  For example, if 55% of the vectors 

inside of the sun-circle are longer than 1.75 pixels/frame, the running average 

of the X and Y components would include the current averages inside of the 

sun-circle plus 19 previous averages.  If a grade of D was received, the X and 

Y component averages would be repeated from the last frame.  An average 

angle for the frame was calculated. 

5. Once a minimum of 20 average sun-circle average angles was obtained, the 

data-flag angle was calculated with a 20-frame running average. 

The entire process is highlighted in Figure 8-12. 

 

Table 8-1. PIVLab vectors grading table for vectors inside of the sun-radius and the 
subsequent number of past X and Y vector components to average. 

Grade 

from 

within 

sun-

radius

Percentage of PIVLab Vectors in the 

sun-radius that are greater than 1.75 

pixels/frame

Running Average of the X 

and Y Components of 

Average Velocity Vector 

for one Frame

# Frames for 

Running-

Average for the 

Date-Flag 

Angle

A between 100% and more than 65% 10 frames 20 frames

B less than 65% and more than 35% 20 frames 20 frames

C less than 35% and more than 10% 30 frames 20 frames

D less than 10% NONE, repeat last frame 20 frames
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Figure 8-12, Example of graded PIVLab values for the Data-Flag in a double averaging 
process.  This example assumes “A” quality data is available. 

When throwing out small vectors from the sun-circle, an arbitrary angle of 20° was 

set as the maximum error allowed for any given velocity vector calculated by PIVLab.  

Assuming a purely X and Y coordinate vector movement, the maximum error per 

pixel is less than 0.5 pixels/vector.  This is assumed because an extremely small cloud 

movement near the edge of one pixel could result in a neighboring pixel being 

activated.  Likewise, a pixel could be half activated prematurely when instead it 

should read nothing.  Assuming:  

A. A 0.5 pixels/unit-vector error in both X and Y is the maximum error for one 

vector. 

B. The vector is purely in the X direction and has only a Y error component.  

The minimum vector to obtain approximately 20° of error or less per vector is shown 

in (8-3). 
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tan(20°) =
0.5𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟

𝑋𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ

 

0.5𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟

tan(20°)
= 𝑋𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ 

𝑋𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ ≅ 1.37 

Adding the Max Pixel Resolution Error to the X length 

𝑋𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ ≅ 1.37 + 0.5𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 ≅ 1.87 

(8-3) 
 

𝑉𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶𝑢𝑡𝑜𝑓𝑓 𝑃𝐼𝑉𝐿𝑎𝑏 =

√𝑋𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑥 𝐿𝑒𝑛𝑔𝑡ℎ
2 + 0.5𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟

2 ≅ √1.872 + 0.52 ≅1.93 

Assuming a Max Pixel Resolution Error in the Y direction of 0.5 pixels, the total 

length of the vector is calculated for a maximum angle error of 20°. 

The maximum error vector length was rounded down to the nearest 0.25 pixels and 

was selected as 1.75 pixels. 

If all grades returned grad-D due to the small amount of uniform cloud movement, 

or no movement at all, the direction angle was used as purely Y in direction.  The 

velocity was set to 2 pixels/frame.  This occurred when it was sunny or uniformly 

overcast. 
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8.8.1. Preprocessing; Heuristic Correction vs. PIV-Lab 

Average Velocities 

Visual observations from the author of clouds moving across the data swath were 

noted.  In many cases that involve non-trivial cloud velocity movements, the visual 

observation of the cloud velocity is higher than what is aggregated from PIVLab.  For 

example, in Figure 8-13 below from Boulder Co., velocities of this cloud are about 

152% of normal. 

 

Figure 8-13. Heuristic correction from visual observations on 4/9/18 in Boulder Colorado. 

When observing the entire data set, a correlation was formed and reported in Graph 

8-8.   
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Graph 8-8. Heuristic correlation of all observable cloud velocities. 

This correction was used as a parameter to analyze the accuracy of the prediction 

space.  The heuristic correlation was linearly fitted to intersect the origin and has a 

subsequent correction of 142.5% of normal.  When referring to an heuristic 

correction in Table 8-2, Table 8-3 and Table 8-4, the PIVLab derived velocity is 

multiplied by 142.5%, and that number is used for the VG with an heuristic 

correction.  Later, the heuristic velocity was varied to include a range of values to 

confirm that a correction of 142.5% minimizes error with the VG method. 
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8.9. Persistence Method, UsingCurrent Irradiance as 

the Future Irradiance Prediction 

As a base case of prediction, it is easy to use the current irradiance as a prediction for 

the future.  From a mathematical standpoint, this “trivial” case is utilized as a 

minimum performance standard since it requires no computation to produce a 

systematic answer.  Other publications may refer to this testing method as the 

“persistence method”.  However, the word “trivial” conveys a better sense of 

uselessness when considering that a processing method must “process” data in some 

meaningful way, rather than just duplicate the input as the output.  Thus, if no 

processing occurs, the process is trivial. 

8.10. High Variability Data Analysis 

When making a prediction of irradiance, Figure 1-1 highlights the ability to predict 

both purely cloudy and completely sunny days.  When the sky background is 

uniformly clear or overcast, the trivial case functions well as a valid prediction, 

because there is no irradiance variability over time.  As a result, a High Variability 

(HV) metric was used to limit data to future irradiance differences of 250 W/m2 or 

greater.  This is highlighted in Figure 8-14. 
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Figure 8-14. High Variability data example. 

A HV testing set was made that contains exclusively HV data for multiple time.  In 

addition, LAPART was trained on both exclusively HV data as well as all data and 

then compared to exclusively HV testing data respectively. 

8.11. LAPART Testing Scenarios 

Two LAPART testing scenarios were employed to test the accuracy of SIMF 

predictions.  They are shown in Figure 8-15, below. 
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Figure 8-15. LAPART testing scenarios. 

Section 8.11.1 employed a method of leaving out a percentage of data for testing.  In 

most scenarios 25% of the data were randomly left out for testing prediction 

accuracy.  The other 75% was used for testing.  Section 8.11.2 utilized a jackknife 

testing scenario where LAPART was trained on all but one of the data and tested on 

the one left out.  The process was repeated with another set of data left out for 

testing where the rest of the days were used for training.  The method repeats with 

one set of data left out until the entire set has been tested.   

A variety of issues from the hardware was examined above, including the lack of 

correlation between VG pixel intensity and irradiance.  Other issues affecting the pre-

processing of data include the Heuristic velocity corrections to the VG location along 

the data flag.  A number of these scenarios and the accuracy of each trial follows. 
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8.11.1. LAPART Testing Scenario; Comparison of Heuristic 

Corrections, High Variability Data and the Trivial Case 

To begin an analysis with LAPART, ρA and ρB were both set to 0.98.  In each case a 

random 25% of the data was reserved for testing and the remainder was utilized for 

training.  When the HV data was specified as a parameter, the remainder of the data 

that did not match the HV criteria was not utilized for both testing and/or training.  

A summary of the RMS error in W/m2 along with other statistics are shown in Table 

8-2, below.  Table 8-3 and Table 8-4, highlight a 60 s, 90 s and 120 s prediction.  

 

Table 8-2. One-minute prediction statistics comparing heuristic velocity corrections, HV 
data and the trivial case. 

 

Prediction 

Time: 60 s 10 s

ρA: 98% 25%

ρB: 98% YES

Trivial 

Case 

Heuristic 

Velocity 

Correction

High 

Variability 

Training    

> |250| 

W/m
2 

High 

Variability 

Testing    

> |250| 

W/m
2 

RMS 

Error 

from 

mid cat. 

W/m
2

# A-

Templates

# N 

Inputs

% # A-

Templates 

/ # N 

Inputs

% passing 

vigilance

 YES YES 272.0 4,009 20,610 19.5% 96.9%

 YES YES YES 136.1 750 1,127 66.5% 95.5%

 YES 53.4 4,057 20,709 19.6% 99.6%

YES YES YES 314.3 4,049 20,633 19.6% 96.6%

YES YES YES YES 464.8 746 1,137 65.6% 95.6%

YES YES 61.4 4,017 20,667 19.4% 99.6%

 YES 206.8 5,310 20,723 25.6% 94.1%

 YES YES 130.1 855 1,154 74.1% 88.5%

 46.1 5,302 20,719 25.6% 98.5%

time interval between pictures: 

Perc. For Testing: 

Always predict best choice ?: 
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Table 8-3. One-and-a-half-minute prediction statistics comparing heuristic velocity 
corrections, HV data and the trivial case. 

 

Table 8-4. Two-minute prediction statistics comparing heuristic velocity corrections, HV 
data and the trivial case. 

Prediction 

Time: 90 s 10 s

ρA: 98% 25%

ρB: 98% YES

Trivial 

Case 

Heuristic 

Velocity 

Correction

High 

Variability 

Training    

> |250| 

W/m
2 

High 

Variability 

Testing    

> |250| 

W/m
2 

RMS 

Error 

from 

mid cat. 

W/m
2

# A-

Templates

# N 

Inputs

% # A-

Templates 

/ # N 

Inputs

% passing 

vigilance

 YES YES 271.0 3,037 20,552 14.8% 98.7%

 YES YES YES 153.3 804 1,449 55.5% 97.9%

 YES 70.1 3,047 20,525 14.8% 99.9%

YES YES YES 281.8 3,066 20,532 14.9% 99.4%

YES YES YES YES 480.0 793 1,400 56.6% 99.4%

YES YES 70.3 3,071 20,453 15.0% 99.8%

 YES 259.7 4,078 20,648 19.8% 99.0%

 YES YES 150.3 881 1,440 61.2% 95.7%

 63.8 4,034 20,502 19.7% 99.6%

time interval between pictures: 

Perc. For Testing: 

Always predict best choice ?: 

Prediction 

Time: 120 s 10 s

ρA: 98% 25%

ρB: 98% YES

Trivial 

Case 

Heuristic 

Velocity 

Correction

High 

Variability 

Training    

> |250| 

W/m
2 

High 

Variability 

Testing    

> |250| 

W/m
2 

RMS 

Error 

from 

mid cat. 

W/m
2

# A-

Templates

# N 

Inputs

% # A-

Templates 

/ # N 

Inputs

% passing 

vigilance

 YES YES 277.2 2,883 20,289 14.2% 99.3%

 YES YES YES 156.8 829 1,642 50.5% 97.7%

 YES 90.3 2,897 20,397 14.2% 99.9%

YES YES YES 281.8 2,890 20,377 14.2% 99.1%

YES YES YES YES 470.6 829 1,628 50.9% 98.8%

YES YES 86.2 2,919 20,305 14.4% 99.9%

 YES 274.5 3,180 20,585 15.4% 99.5%

 YES YES 171.1 850 1,627 52.2% 98.8%

 78.0 3,218 20,551 15.7% 99.9%

time interval between pictures: 

Perc. For Testing: 

Always predict best choice ?: 
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When comparing the RMS error of the heuristic velocity correction vs. no correction 

(using PIVLab velocities as calculated), graphing these values reveals contradictory 

results, as indicated in Graph 8-9 below. 

 

Graph 8-9. RMS error of predictions, testing and training on high variability data using 
PIVLab and heuristic velocities. 

It is shown that the RMS error steadily increases as the prediction time increases.  

What is not consistent, is why the error of the heuristic velocity correction decreases 

with a two-minute prediction.  This motivated an analysis to vary the heuristic 

velocity correction percentage versus the RMS error for the prediction.  Since a two-

minute prediction would affect the velocity gate the most compared to a 90 s and 60 

s prediction, two minutes was chosen as the prediction horizon. 
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8.11.1.1. Heuristic Velocity Correction Comparison vs. Observed 

Scenarios 

An analysis was done to compare the error of multiple heuristic velocity corrections 

with a 120 second prediction.  The results are shown below in Table 8-5 and Graph 

8-10. 

 

Table 8-5. RMS error based on multiple heuristic velocity corrections. 

 

Prediction Time: 120 s 10 s

ρA: 98% 25%

ρB: 98% YES

High Variability 

Data Training: 
YES NO

High Variability 

Data Testing: 
YES   NA

Auto-manual 

Velocity 

Correction 

RMS Error 

from mid 

cat. W/m
2

# A-

Templates # N Inputs

Percentage 

(%) # A-

Templates /               

# N Inputs

Percentage 

(%) passing 

vigilance

100% 171.1 850 1,627 52.2% 98.8%

110% 159.4 827 1,668 49.6% 99.2%

120% 167.0 821 1,621 50.6% 99.6%

130% 166.1 800 1,604 49.9% 99.6%

140% 165.9 775 1,590 48.7% 99.8%

142.5% 156.8 829 1,642 50.5% 97.7%

150% 163.6 769 1601 48.0% 98.9%

160% 172.0 792 1581 50.1% 99.4%

170% 166.4 741 1528 48.5% 99.3%

180% 169.6 731 1550 47.2% 99.8%

190% 167.2 715 1487 48.1% 99.3%

200% 157.5 709 1488 47.6% 99.6%

time interval between pictures: 

Perc. For Testing: 

Always predict best choice ?: 

Time restriction on Testing ?: 

Time restriction Times (24 hrs.): 
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Graph 8-10. Graph of the RMS error based on multiple heuristic velocity corrections. 

Since the original heuristic velocity correction was 142.5% and no correction is 100%, 

these data were added into the analysis.  New LAPART tests were compared with 

heuristic velocity corrections between 110% and 200%, in increments of 10%.  

Graph 8-10, would indicate that a heuristic correction of 142.5%, as was verified by 

linear regression of Graph 8-8.  However, subsequent corrections of 110% and 200% 

present similar error results.  This observation was derived from HV data only while 

testing and training. 

Though the data input was simplified via a projection of multiple cameras onto flat 

sky, there could be visual effects at low angles that cause false or distorted inputs.  As 
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a result, a analysis was re-run to restrict the time of day to approximately two hours 

before and after solar noon and without consideration of longitudinal or analemma 

effects.  Since this data set is from Boulder, Co. during daylight savings time, solar 

noon was calculated as approximately 13:00.  RMS errors are shown below in Table 

8-5 and Table 8-6, with all data for both training and testing restricted between times 

of 11:00 to 15:00.  This is about two hours on both sides of solar noon. 
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Table 8-6. RMS error based on multiple heuristic velocity corrections restricted to two hours 
before and after solar noon. 

Prediction Time: 120 s 10 s

ρA: 98% 25%

ρB: 98% YES

High Variability 

Data Training: 
YES YES

High Variability 

Data Testing: 
YES

11:00 to 

15:00 MDT

Heuristic Velocity 

Correction 

RMS Error 

from mid cat. 

W/m
2

# A-

Templates # N Inputs

Percentage 

(%) # A-

Templates /               

# N Inputs

Percentage 

(%) passing 

vigilance

100% 175.8 841 1,645 51.1% 99.3%

105% 167.3 817 1,599 51.1% 99.1%

110% 174.3 808 1,632 49.5% 98.9%

115% 159.3 832 1,611 51.6% 98.6%

120% 166.5 835 1,646 50.7% 99.4%

125% 170.4 805 1,607 50.1% 99.6%

130% 163.5 800 1627 49.2% 99.4%

135% 173.4 796 1591 50.0% 99.8%

140% 150.5 791 1597 49.5% 99.8%

142.5% 142.9 788 1606 49.1% 99.2%

145% 159.5 770 1573 49.0% 99.8%

150% 161.7 781 1629 47.9% 99.4%

155% 158.6 766 1576 48.6% 99.5%

160% 168.5 784 1611 48.7% 99.2%

165% 165.0 746 1565 47.7% 99.6%

170% 161.2 759 1579 48.1% 99.4%

175% 160.0 740 1558 47.5% 99.8%

time interval between pictures: 

Perc. For Testing: 

Always predict best choice ?: 

Time restriction on Testing ?: 

Time restriction Times (24 hrs.): 
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Graph 8-11. Graph of the RMS error based on multiple heuristic velocity corrections 
restricted to two hours before and after solar noon. 

When the data were restricted to scenarios with the sun’s lowest incidence angle 

which was two hours on each side of solar noon, the heuristic correction consistent 

with Graph 8-8, 142.5%, produced a two-minute prediction with the lowest RMS 

error. 

Though no mathematical convergence theorem exists for LAPART at the neuron 

level, the statistical metric of the number of A-Categories formed relative to the number of 

training inputs, reveals useful information.  In all testing scenarios that alter the 

heuristic velocities, it is important to note the number of A-Categories relative to the 

number of training inputs were always between 40%-50%.  This implies that 
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LAPART may be returning accurate predictions, but it is not done learning.  With 

50% of A-Categories relative to the number of inputs formed, one could expect a 

non-passing vigilance choice on approximately 50% of the prediction inputs.   

In all subsequent training scenarios, when specifying a heuristic correction, the value 

used was 142.5% of normal.  This value was calculated in Graph 8-8 with a linear 

regression and an R-squared linear correlation of 0.81.  It was also confirmed to be 

the best experimentally in Graph 8-10 and Graph 8-11. 

8.11.2. LAPART Testing Scenario; Jackknife Training 

Jackknife training was employed as a LAPART training scenario.  With this training 

method, LAPART was randomly trained on all but one of the data inputs.  Testing 

was then performed on the one input that was left out and its prediction metrics were 

recorded.  The entire process was repeated, progressively leaving out individual inputs 

and training on the rest, until all the inputs were tested.  The jackknife process was 

particularly useful in acquiring the minimum possible error that can be expected from 

the network.   

The normalized VG standard deviation was also restricted at various levels while 

utilizing the jackknife process.  The number of A and B-side categories was also 

recorded.  Since there were as many training scenarios as there were data inputs, the 

standard deviation and average number of A and B-side categories found was also 

recorded. 

A summary of the findings from this testing scenario is shown in Table 8-7 below. 
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Table 8-7. Jackknife training scenarios limited by the standard deviation of the normalized 
velocity gate. 

By progressively relaxing the VG standard deviation restrictions, the data sets contain 

less and less uniform data.  With less uniform data in the VG and a higher number of 

training inputs, the number of A and B side categories as well as the standard 

deviations of the number of categories, progressively raised.   

Graphs of LAPART’s high and low predictions from the B side category are shown 

below in Graph 8-12, Graph 8-13, Graph 8-14 and Graph 8-15.  They were restricted 

by normalized VG standard deviation cutoff and the residual error of the predictions 

was also plotted versus the 10 second data input in linear order. 

Jacknife training, leave one out, train on all others;  120 s. prediction

Restricting the VG Standard Deviation 

a/b rho = 0.98/0.98;  25,409 total data

VG Normalized StDev. 

Restriction (less than)

Avg. # 

A Cats.

Avg. # 

B Cats.

stdev # 

A Cats.

stdev # 

B Cats.

RMS 

Error in 

W/m
2

# of 

data

% of 

Total 

Data

0.01 79 24 3.9 1.5 8.33 3011 11.9%

0.02 109 26 4.6 1.6 8.33 3722 14.6%

0.03 130 28 5.3 1.7 8.61 4147 16.3%

0.10 347 34 8.0 2.0 12.45 5870 23.1%
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Graph 8-12. Jackknife LAPART trained restricted to Norm.VG Std. dev. < 0.01; 120 sec. 
prediction. 

 

 

Graph 8-13. Jackknife LAPART trained restricted to Norm.VG Std. dev. < 0.02; 120 sec. 
prediction. 
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Graph 8-14. Jackknife LAPART trained restricted to Norm.VG Std. dev. < 0.03; 120 sec. 
prediction. 

 

Graph 8-15. Jackknife LAPART trained restricted to Norm.VG Std. dev. < 0.10; 120 sec. 
prediction. 
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In all jackknife training scenarios, the expected RMS error was less than the variation 

caused by the size of the B side category.  Since ρB was set to 0.98 and the single 

input irradiance was normalized to a range of 1000 W/m2, the size of the B category 

was expected to be 2% of the range or approximately 20 W/m2.  In all jackknife 

testing scenarios, the average prediction error was less than the size of the category.  

This was consistent with what would be expected from LAPART if it was learning 

correctly.  Though an RMS error of 20 W/m2 cannot be expected for every 

prediction case, the data from the jackknife training scenarios has shown the 

forecasting methodology to be valid. 

Analysis of individual RMS errors in Graph 8-15 shows that they often occur in 

single incidents.  This could be explained by the VG misplacement on the data flag, 

which was highlighted above.  However, it could also be explained by the extremely 

sensitive nature of a single irradiance sensor having not been occluded yet but was 

about to be.  Since measurements occur at intervals of ten seconds and the response 

time of the irradiance sensor is about one tenth of a second, it would be entirely 

plausible for a measurement error to occur within a ten second period due only to the 

sample rate.  What would be indicative of a non-systematic problem in the physical 

hardware or LAPART would be a sustained RMS prediction error of the irradiance.  

Jackknife training has shown that this was not typically the case as large prediction 

errors usually occurred in single cases as opposed to reoccurring multiple times 

sequentially.  
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9. Conclusions and Observations of Importance 

It has been shown, when utilizing new sensor technology, the velocity gate 

preprocessing method and LAPART, that two and a half minute predictions of 

irradiance measurements over solar fields are possible.  When relatively uniformly 

cloudy conditions occur LAPART was able to predict an RMS error less than half of 

the size of the B-side category.  In all cases LAPART’s average RMS error was less 

than the B-side category.  This would indicate that LAPART can learn and adapt to 

changing cloud patterns while maintaining accurate predictions.  Jackknife testing has 

shown, when predictions occur with irradiance over large PV fields, the actual RMS 

error of the field prediction may less due to the smoothing effect that the field has on 

the output of electricity to the grid.  When a PV field is large, the accuracy of the 

prediction of the field will increase as it will take longer for the field to be occluded 

by clouds relative to a single sensor. 

9.1. Multiple Cloud Layers 

The largest motivation for accurate cloud mappings was that the VG method 

required accurate velocity vectors for both the data flag direction and correct location 

of the VG on the data flag. 

This observation was confirmed in an example by retrieving the Aviation Weather 

Center published by the National Oceanic and Atmospheric Administration for 

Denver Airport on a cloudy day, shown in Figure 9-1 below. 
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Figure 9-1. Multiple cloud layers shown at the Denver airport [211]. 

Multiple cloud layers have an impact on the velocity vectors that control the data flag 

direction.  In many observed cases, the upper layer of clouds is more uniform and 

systematic involving clouds like cirrocumulus, cirrostratus, cirrus, altocumulus and 

altostratus, as shown in Figure 9-2 below.  These upper layers can have a different 

velocity vector and affect the data flag.  However, when high level clouds are present, 

they typically are already occluding the sun and reducing irradiance in a uniform 

manner.  This means that irradiance predictions are not as crucial to PV fields.  When 

these clouds are present only minimally and irradiance predictions are more 

important, their effects are diminished. 

9.2. Limitations on the Input Space 

A discussion of various cloud heights and the problems they entail was highlighted.  

Thick, dense, cotton ball looking clouds that are not rain generating are now 

analyzed.  These clouds typically include cumulus, stratocumulus and stratus clouds, 

shown in Figure 9-2 below. 
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Figure 9-2. Cloud types and general heights [212]. 

These clouds are the main source of large PV field instabilities because they are 

dense, reoccurring and non-indicative of a permanently changing weather pattern for 

the day.  Rain producing clouds like cumulonimbus and nimbostratus formations also 

occlude solar panels, but they also indicate a relatively constant change in the daily 

weather pattern.  Rain producing clouds occlude PV farms, but then usually stay in 

one place and do not cause many more short-term occlusions events.  Cumulus, 

stratocumulus and stratus cloud formations can persist all day turning on and off PV 

farms many times without indicating any systematic change in irradiance.  These are 

the cloud formations that should be the continued focus of SIMF. 

Because these cloud formations are small compared to rain producing formations, 

they are highly suspectable to changing size due to atmospheric conditions to which 
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they change move into or out of.  This includes growing as well as disappearing in 

size as they move from one part of the sky to another.  It is hypothesized that 

LIDAR could be utilized to identify the specific sections of the atmosphere that 

affect these cloud’s densities to better improve SIMF accuracies. 

9.3. Improvements in PIV Pre-Processing Using the 

Gradient Map (Streamlines) 

In many cases, cloud formations do not move in linear patter.  However, the data flag 

requires a linear direction for its construction.  For short time periods this is 

sufficient.  For longer time frames where the VG is far from the sun, it is 

hypothesized that a gradient map of vectors be utilized to make a curved data flag 

that follows a streamline intersecting the sun.  How necessary this advanced 

geometric construction is, depends on both the curl of the velocity map and the 

timeframe of the prediction. 

9.4. Overcast and sunny use of Now-Cast like input 

When the cloud input is overcast and uniform or completely sunny, it was often hard 

for PIVLab to obtain enough cloud features to find a direction.  When these 

conditions occurred, the default value was set to the predominant wind direction of 

the earth.  In the case of testing in Boulder, Co. that direction was pointing straight 

west as that location is in the westerlies.  If weather data were available via wi-fi or a 

cellular data hotspot, the algorithm could simply query the closest NOAA Aviation 
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Weather Center data and utilize the wind direction they report.  Weather this is 

necessary for SIMF when the sky is uniformly cloudy or completely sunny, was not 

investigated.   
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Appendices 

Appendix A Relevant Search Terms for SIMF and Irradiance 

Forecasting 

1. solar irradiance forecasts 

2. solar forecasts 

3. solar micro forecasts 

4. hourly forecast 

5. short term irradiance  

6. intra-hour 

7. very short-term solar forecasting  

8. Very short term forecasting of the Global Horizontal Irradiance 

9. short term forecast irradiance 

10. Helioclim maps 

11. Lucas Kanal 

12. Gunnar Farneback  cross correlation wiki Implement in Fourier 

13. Robust cloud motion 
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Appendix B PIVLab Settings 

The motivation for accurate cloud geometries was highlighted in the need for 

accurate velocity measurements.  With accurate velocities, data can then be reduced, 

which also reduces the processing power required to make predictions.  Velocities 

measurements were calculated with PIVLab 2.01.  A list of all setting used is shown 

below in Table 10-1 for reference. 

 

Table 10-1. Table of PIVLab 2.01 setting used by category. 

 

  

PIVLab Settings

Image Preporcessing CLAHE window size 20

FFT window yes

Interrogation area 40

interrogation area Step 30

interrogation area Step, Pass 2 20

interrogation area Step, Pass 3 15

window deformation SPLINE

sub-pixel 2D Gauss

5X repeated coorelation yes

disable auto coorelation yes

Post Processing, STD Dev. 1.5
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Appendix C Data Collection of Dates And Times Of Test 

 

Table 10-2, Listing of all days and times for data collected in Boulder Co. 

 

 

Folder Name

Start 

Number

Finish 

Number

Total # 

samples

Total Time, 

Hours

20180331_Anthony_A_Boulder 0 715 715 1.99

20180331_Anthony_B_Boulder 0 715 715 1.99

20180402_Anthony_B_Boulder 0 1795 1795 4.99

20180404_Anthony_A_Boulder 0 835 835 2.32

20180409_Anthony_B_Boulder 0 1000 1000 2.78

20180410_Anthony_B_Boulder 0 1075 1075 2.99

20180416_Anthony_A_Boulder 0 1075 1075 2.99

20180418_Anthony_A_Boulder 0 1075 1075 2.99

20180418_Anthony_B_Boulder 0 1075 1075 2.99

20180419_Anthony_A_Boulder 100 1075 975 2.71

20180419_Anthony_B_Boulder 5 1075 1070 2.97

20180425_Anthony_A_Boulder 300 1075 775 2.15

20180425_Anthony_B_Boulder 0 1075 1075 2.99

20180426_Anthony_A_Boulder 0 1075 1075 2.99

20180428_Anthony_A_Boulder 0 1435 1435 3.99

20180430_Anthony_A_Boulder 0 1430 1430 3.97

20180501_Anthony_A_Boulder 0 770 770 2.14

20180504_Anthony_A_Boulder 300 1795 1495 4.15

20180504_Anthony_B_Boulder 0 1435 1435 3.99

20180505_Anthony_A_Boulder 100 1615 1515 4.21

20180507_Anthony_A_Boulder 500 2155 1655 4.60

20180509_Anthony_A_Boulder 0 2155 2155 5.99

20180510_Anthony_A_Boulder 0 2155 2155 5.99

Total Hours: 78.82
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