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APPARATUS AND METHOD FOR SOLAR collected from the meteorological data via a neural network 
ENERGY RESOURCE MICRO - FORECASTS coupled to the camera , and forecasting solar energy irradi 
FOR SOLAR GENERATION SOURCES AND ance potential and subsequent photovoltaic output in the 

UTILITIES given region using the collected meteorological data , esti 
5 mated irradiance levels , and physical characteristics of a 

CROSS - REFERENCE TO RELATED solar generating system in the given region at a predeter 
APPLICATIONS mined time in the future via the neural network . 

The camera of this embodiment is preferably a shadow 
This application claims the priority benefit of U . S . pro - band - less fixed camera using a Si - based sensor or other 

visional application No . 61 / 972 , 758 , entitled “ Apparatus 10 lower energy photon sensors . The method can include 
and Method for Solar Energy Resource Micro - Forecasts for analyzing surrounding and occluding clouds as seen from 
Solar Generation Sources and Utilities , ” filed on Mar . 31 , one or more pictures from the camera . The camera can take 
2014 , the disclosure of which is incorporated herein by a picture with lower energy photon wavelengths and is less 
reference . sensitive to higher energy photon wavelengths . The method 

15 preferably includes simulating future solar energy produc 
BACKGROUND OF THE INVENTION tion of the utility system based on the forecast of solar 

energy irradiance potential and subsequent photovoltaic 
Field of the Invention output . The neural network may have a neural network 
Embodiments of the present invention include an appa architecture . The network architecture can be a fuzzy artmap 

ratus and method for forecasting solar energy irradiance 20 architecture . The neural network architecture may have 
potential and subsequent photovoltaic output in a region . weighted connections associated with each category neuron 

Description of Related Art in a layer that adapts during learning . The neural network 
Solar energy is becoming increasingly attractive to both can include a sub - network and wherein cloud images are 

retail and commercial consumers as a means to generate processed and presented to the sub - network . The neural 
electricity . The main drawback to solar energy occurs when 25 network can also include a second sub - network comprising 
intermittent cloud cover moves over the solar field . This is a solar irradiance signal at a future time . The method can 
known as solar resource intermittency . Currently , solar inter - include smoothing photovoltaic output using a battery sys 
mittency is only a small problem because the ratio of tem based on the simulated future solar energy production 
intermittent resources to fossil or nuclear energy sources is and adjusting the energy requirements produced by the 
small . However , with increasing amounts of solar energy 30 utility system based on the simulated future solar energy 
being integrated into electricity grids , solar intermittency production . 
can become a non - trivial problem for utilities . Another embodiment of the present invention includes an 

Two methods of mitigating these intermittencies are cur - apparatus for forecasting solar energy irradiance potential 
rently employed by utilities . The first method involves and subsequent photovoltaic output in a predetermined 
generating electricity from another source and feeding that 35 region for reducing energy requirements on a utility system . 
electricity to the area that was being supplied by solar . This The apparatus can include a camera for collecting meteo 
electricity generation source can come from large scale rological data for a given region , a neural network coupled 
batteries , fast responding natural gas generators or diverting to the camera for estimating irradiance levels using param 
electricity from one area to another . Batteries and other eters collected from the meteorological data . The neural 
storage devices are being used to counteract the variation in 40 network forecasts solar energy irradiance potential and 
power production from solar photovoltaic ( PV ) plants . subsequent photovoltaic output in the predetermined region 
These storage devices help maintain power quality as well as using the collected meteorological data , estimated irradiance 
ensure that variability of distributed power generation does levels , and physical characteristics of a solar generating 
not cause unwanted uncertainty in power demand from the system in the predetermined region at a predetermined time 
electric utility . A disadvantage of using batteries , however , is 45 in the future . The neural network can also simulate future 
that they are expensive and susceptible to wear from exces - solar energy production . The utility system coupled to the 
sive cycling . Calculations have shown that the integrated neural network can include energy requirements that are 
energy input / output to a battery system can be reduced by a adjusted based on the simulated future solar energy produc 
factor of at least five if an approximately three minute tion determined by the neural network . The camera can be 
forecast of PV production is available . A second mitigation 50 a shadowband - less fixed camera using a Si - based sensor or 
strategy is to announce price signals and indicators specific other lower energy photon sensors . The camera can alter 
to the occlusion event to incentivize a demand reduction , natively be a far infrared imaging sensor . The neural net 
also known as a demand response . In both mitigation work can include a neural architecture . The utility system 
strategies , electricity quantities , either with excess electric - preferably includes a photovoltaic system . The utility sys 
ity or shortage , have to be actively managed . Common to the 55 tem can also include one or more batteries coupled to the 
success of electricity management with interment resources photovoltaic system . The neural network can include a 
is a need for a forecast of solar energy irradiance potential sub - network where cloud images are processed and pre 
and subsequent photovoltaic output predictions . sented to the sub - network and a second sub - network having 

a solar irradiance signal at a future time . 
SUMMARY 

BRIEF DESCRIPTION OF THE FIGURES 
An embodiment of the present invention includes a 

method of forecasting solar energy irradiance potential and FIG . 1 illustrates an aerial view of a photovoltaic farm 
subsequent photovoltaic output in a region for reducing with battery storage . 
energy requirements on a utility system . The method 65 FIGS . 2A and 2B are graphs showing solar irradiance 
includes collecting meteorological data for a given region signals sampled at about ten second intervals and smoothed 
via a camera , estimating irradiance levels using parameters with a trailing window and with a centered window using an 

60 
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about four minute window . FIG . 2A is a 4 - minute window irradiance category . ART can also be used in an embodiment 
and FIG . 2B is a 10 - minute window . of the present invention to analyze whole - house records to 

FIGS . 3A and 3B are graphs showing ramp rate for an produce information for a solar hot water system . 
example system , including a PV array and battery in FIG . Neural networks are machine learning systems whose 
3A and just a battery in FIG . 3B . Note the logarithmic scale 5 design and processing are inspired by biological nervous 
on the battery ramp rate distribution . systems . These neural networks borrow from biology the 

FIGS . 4A and 4B are graphs illustrating power require - notions of neurons as the elemental processing unit and the 
ments and energy balance for a smoothing battery using a ways in which neurons are linked via unidirectional adaptive 
trailing ( solid line ) and centered ( dashed line ) moving connections . Non - limiting examples of neural networks 
average as a reference signal . 10 include but are not limited to feedforward neural networks , 

FIG . 5 illustrates a typical near - infrared image of clouds kohonen self - organizing networks , recurrent or bi - direc 
surrounding the sun . tional networks , radial basis function networks , supervised 

FIG . 6 illustrates pixel intensity along a line in the and unsupervised fuzzy and non - fuzzy maps , and particle 
direction of cloud motion passing through the sun for a image velocimetry techniques . 
series of about 20 frames spaced about 10 seconds apart . An 15 A network includes a wiring diagram or graph showing 
opening in the cloud cover approaching the sun can be seen how neurons are interconnected . Some of the neurons have 
moving from left to right , coinciding with the sun around special roles in the network acting as interfaces to the 
frame 135 , position 180 . The opening can be seen receding environment ; for example , receiving inputs from sensors or 
after this . sending signals to motor controllers . The connections in a 

FIG . 7 illustrates a prediction band for the solar irradiance 20 network have the job of transporting the output of one 
about one minute after the image is presented to a neural neuron to the input of another , and are characterized by their 
network , e . g . , a Lateral Adaptive Priming Adaptive Reso source and target neurons as well as their connection 
nance Theory ( LAPART ) network , shown together with the strength , usually represented as a weight . 
actual measured value . The processing of an individual neuron is as follows : 

FIG . 8 illustrates a diagram of a LAPART type neural 25 First , the neuron integrates all of its weighted inputs arriving 
network that associates the output from classifier A with the on in - coming connections from other neurons . Second , it 
output from classifier B . maps this integrated value through a possibly nonlinear 

FIG . 9 illustrates one input classifier of the neural net - function to form a new output . Third , it adapts the connec 
work . tion strengths on its in - coming connections . 

FIGS . 10A and 10B illustrates how the neural network 30 The adaptive process is referred to as “ learning ” in this 
classifies data at different levels of associativity . field , and falls into two broad classes : 1 ) supervised , and 2 ) 

FIG . 11 illustrates a prediction of normalized irradiance self - organizing . The supervised method trains data having 
with a prediction band representing the high and low pre pairs of input / output samples . An input sample is supplied to 
dictions within a certain confidence interval . the network through its input neurons , and the connection 

35 weights are modified to help the output neurons reproduce 
DETAILED DESCRIPTION the output sample . The list of input / output samples is called 

the training set , and one learning pass through this set is 
Embodiments of the present invention include an appa called a training epoch . Through training over many epochs , 

ratus and method of forecasting solar energy irradiance the output neurons gradually begin to match the desired 
potential and subsequent photovoltaic output in a region . 40 output behavior provided by the training set . 
The apparatus and method includes collecting meteorologi - The second method functions quite differently . In self 
cal data for a given region and then estimating irradiance organizing learning , the network is not supplied a desired 
levels using parameters collected from the meteorological output for its output neurons . Instead , during the learning 
data . Solar energy production is then simulated using the epochs , the weights are modified to help the output neurons 
collected meteorological data , estimated irradiance levels , 45 autonomously encode categories of systematic or regular 
and physical characteristics of a solar generating system in patterns that exist in the input samples . Often this is referred 
the given region at a predetermined time . Collecting meteo - to as discovery learning , where the network learns to 
rological data can include collecting one or more pictures respond with a unique output pattern when a member of a 
from a camera . Simulating solar energy production can category of similar input patterns is presented to it . 
include analyzing surrounding and occluding clouds as seen 50 A neural network and its learning methods are referred to 
from the one or more pictures from the camera . The camera as a neural architecture . Neural architectures are typically 
preferably takes picture with lower energy photon wave - implemented as algorithms in computer software simula 
lengths and less sensitive to higher energy photon wave - tions . The " goodness ” of a learning method is usually 
lengths . In this embodiment , a forecast of solar energy quantified by the number of training epochs required to 
irradiance potential and subsequent photovoltaic output in 55 reach a given level of output performance . 
the given region is also provided . A computational predic A preferred embodiment incorporates a neural architec 
tion of solar energy irradiance potential and subsequent ture in the class of self - organizing learning systems , such as 
photovoltaic output in the given region may also be pro - ART . When presented an input pattern , a self - organizing 
vided . The computational prediction preferably includes a architecture rapidly categorizes it as a member of either an 
neural network . The computational prediction can also 60 existing category or a new ( novel ) category . If an existing 
incorporate a neural network architecture . category matches the pattern , then the network responds 
An embodiment of the present invention includes an with an existing output code indicating its membership in a 

apparatus and method of using a neural network system to category . If no existing category matches , then the network 
associate a cloud pattern category with a future solar irra - creates a new output code that will in the future respond to 
diance category . In some embodiments , Adaptive Resonance 65 the novel pattern . 
Theory ( ART ) , a type of neural network system , may be Solar Micro - Forecasts for Improving the Efficiency of PV 
used to associate a cloud pattern category with a future solar Farm Output Smoothing 

quan 
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Distribution level photovoltaic ( PV ) farms are becoming system ramp rates for both window sizes have a strong peak 
increasingly attractive for utilities to meet renewable port centered between + 1 kW / s . The ramp rates for the 10 - minute 
folio standards . These installations , typically with peak sliding window have secondary peaks contained within 12 
power ranging from 0 . 5 MW to 2 MW , are generally kW / s , while the 4 - minute ramp rates have secondary peaks 
cost - effective , and can be deployed in a matter of months , 5 contained within + 4 kW / s . In the context of a 1 MW system , 
without lengthy transmission interconnection delays . Siting ramp rates of this size can be considered in the same league 
PV at a single location provides economies of scale in as noise caused by parasitic loads , such as battery air 
comparison to residential PV , and allows a utility to control conditioning systems , so it can be concluded that a 10 - min 
and maintain the resource more effectively . However , ute window and a 4 - minute window provide equivalent 
because a PV array is within a small geographic area , it is 10 system performance . It is also important to understand the 
more susceptible to cloud - driven intermittency than either effect of the window size on the battery itself . This is also 
large ( > 100 MW ) installations or residential roof mounted shown in FIGS . 3A and 3B . The ramp rate frequency 
installations of equivalent capacity . Batteries are sometimes distribution for both window sizes is essentially equal , 
deployed to offset power quality problems due to cloud - meaning that the battery demand is also largely unaffected . 
driven intermittency . In one non - limiting example , the 15 It is also noteworthy that ramp rates are concentrated within 
deployment of a 500 kW PV farm with 1 . 0 MWh total + 20 kW / s , but there are occasional ramp rates up to 100 
smoothing and shifting batteries , located in Albuquerque , N . kW / s in both directions . 
Mex . was analyzed . An aerial view of a plant 100 is shown Having established that , in terms of system performance 
in FIG . 1 . Plant 100 is , for example , a 0 . 5 MW Prosperity PV and ramping capacity of the battery , there is little difference 
plant with battery storage 105 . Plant 100 occupies approxi - 20 between using a 4 - minute and a 10 - minute sliding average . 
mately four acres ( 16 , 000 square meters ) . Shifting and The 4 - minute sliding window is preferred even in the case 
smoothing batteries 105 are shown as well as PV panels 110 that a trailing window is used , since the lag time is 2 minutes 
in FIG . 1 . instead of 5 . Moreover , predicting solar irradiance 2 minutes 

In the example , a 250 kWh subset of a battery system 105 , ahead is a more achievable task than 5 - minute ahead pre 
capable of delivering up to 500 kW of power , is used to 25 dictions . 
offset cloud - driven variability , by delivering power when The benefits from using a centered sliding window , rather 
clouds suddenly occlude the sun , and by absorbing power than a trailing one , are evident from inspection of FIGS . 4A 
when the sun re - emerges . The magnitude of the power and 4B . In general , the power that the battery is called on to 
delivered or absorbed by the batteries is based on the deliver or absorb is smaller when using a centered window . 
difference between the instantaneous power produced by the 30 However , the principal advantage comes from the amount of 
PV farm , and an underlying ‘ smooth ' power . The smooth energy that the battery must release or store . The maximum 
signal is calculated a number of ways including , by using a deviation of the state of charge from a nominal value is 
moving average of the real - time power production , or by a approximately 8 kWh for the centered window , and 40 kWh 
low - pass filter . The size of the moving average generally for the trailing window . 
ranges from about one minute to approximately thirty min - 35 It is evident from inspection of the plots that the difference 
utes . The raw signal , and moving averages obtained with a between real - time irradiance and average irradiance is gen 
sliding windows of about 4 - 10 minutes are shown in FIGS . erally smaller for the case of the centered sliding window . 
2A and 2B . In this example , solar irradiance signals were Thus , by using a centered sliding window , the requirement 
sampled at about 10 - second intervals ( raw irradiance as a on the batteries is smaller . 
solid line in FIGS . 2A and 2B ) , and smoothed with a trailing 40 While batteries can be designed for this duty cycle , their 
window ( dashed line with dot in FIGS . 2A and 2B ) and with lifetime is nevertheless a function of the total energy 
a centered window ( dashed line in FIGS . 2A and 2B ) using absorbed or delivered . If it were possible to use a centered 
an about 4 - minute window in FIG . 2A and an about 10 - min - window , the lifetime of the smoothing batteries may be 
ute window in FIG . 2B . extended substantially . This is illustrated in FIGS . 4A and 

The moving averages are preferably calculated using a 45 4B . While the power delivered by the batteries using a 
window trailing the real - time signal , and using a window of centered 4 - minute window is comparable to the power 
the same size , but centered on the real - time signal . The delivered by batteries using a trailing window , the energy 
trailing window signal lags the centered window signal by a drawn or stored is approximately 100 times smaller , corre 
time equal to half the size of the window , but is otherwise sponding to a longer lifetime . 
identical . To ensure that sufficiently smooth power is deliv - 50 A challenge is that , in the field , only data for past events 
ered to the grid , the power corresponding to the difference are available , so that only a trailing sliding window can be 
between the real - time irradiance and the averaged irradiance used . An embodiment of the present invention provides a 
is supplied by the batteries according to : short - term prediction for the future ( a micro - forecast ) , at 

very low cost , making it possible to use a centered window . 
P batt = P smooth - Ppv , ( + ) 55 The importance of short - term cloud predictions , as well as 

where Pbatt is the power supplied to the system by the means to obtain them , is known . Because of the emphasis on 
battery , Ppy is the power supplied to the system by the PV minimal cost , it is assumed that a simple , shadowband - less 
array , and Psmooth is the PV array power averaged over the fixed camera using Si - based charge - coupled device ( CCD ) 
sliding window . technology is used to obtain a prediction . Far infrared 

For simplicity , it is assumed here that the PV array power 60 imaging is also an option , but is expensive . Si - based CCDs 
is directly proportional to the solar irradiance , although in are sensitive to near - IR , and a short - pass filter can be placed 
general PV efficiency varies with irradiance and the inverter in front of the CCD to only allow visible - range photons . 
may clip power when this exceeds the inverter ' s own when taking images centered around the sun , without a 
capacity . The 1 - second ramp rate frequency distributions for shadowband , there is intense glare from the sun . The sun ' s 
the system and for the battery is shown in FIGS . 3A and 3B , 65 image bleeds through to the pixels around the sun ' s disk , and 
for both the 4 - minute and 10 - minute sliding windows , for a in addition , there is atmospheric scattering around the solar 
system of 1 MW capacity with unlimited battery power . The disk , making it very difficult to clearly see clouds that are 
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approaching the sun . By using a long - pass filter , it is The embodied neural architecture is in a class of self 
possible to eliminate the visible range entirely from the organizing learning systems . When presented an input pat 
image projected onto the camera ' s CCD , along with some of tern , the network rapidly categorize the input pattern as a 
its undesirable side - effects , including glare and atmospheric member of either an existing category or a new ( novel ) 
scattering . And clear images of the solar disk and of neigh - 5 category . If an existing category matches the pattern , then 
boring clouds are possible . In a non - limiting example , a the network responds with an existing output code indicating 
digital SLR camera mounted on a tracker ( to keep the sun at its membership in a category . If no existing category 
the center of the image ) was used , combined with a Licor matches , then the network creates a new output code that in 
( L1200 ) pyranometer mounted in the vicinity . The camera is . the future responds to the novel pattern . FIG . 9 shows the 
triggered by an electrical signal provided by a National input system and internal network structure . The input 
Instruments / Labview visual instrument , which simultane - system generically represents the source of training data for 
ously obtains a reading from the Licor , so that each image the system . The input layer is labeled FO while the output 
can be correlated to an irradiance measurement . An example layer is labeled F2 . For the particular architecture used in 
of such an image is shown in FIG . 5 . this example , the output layer is a winner - takes - all structure ; 

If the sun is not occluded , approaching clouds can be the output code for a given category of input pattern was 
distinguished . Similarly , in a field of dark clouds , an opening represented as a single active F2 neuron . As new categories 
in the cloud cover can be seen before it reaches the sun . To are required , the size of the F2 layer grows . 
illustrate the principle , and in an example , a pixel intensity Internal to the network architecture are weighted connec 
along a line in the direction of cloud motion passing through 20 tions associated with each category neuron in the F2 layer 
the sun was obtained for a series of images spaced ten that adapt during learning . For a given presentation of an 
seconds apart . This is plotted in FIG . 6 . The movement of an input , only the weights associated with the active F2 neuron 
opening in the cloud cover can clearly be seen , first are modified . These weights are symbolically represented as 
approaching the sun , then receding . The approaching and the triangle marked Tk in FIG . 9 for the winning neuron k 
receding break in cloud cover can be observed at least 60 25 in the F2 layer . The weights Tk may be interpreted as a 
seconds before and after its coincidence with the location of prototype of the input patterns that activate neuron k . That 
the sun . prototype takes the form of a hyperbox containing all of the 

Having established the possibility of detecting changes in patterns that are members of a category , as shown in FIGS . 
cloud cover , an embodiment of the present invention 10A and 10B . 
includes a tool to interpret the images and provide a forecast , 30 With a specific choice of internal configuration , this 
possibly associated with a measure of reliability . In keeping architecture tends to exhibit single epoch learning conver 
with the stated requirement of cost - effectiveness , the image gence . That is , given a finite number of training patterns , the 
processing is carried out with relatively small processing number of learned categories and all internal connection 
power , such as might be available , for example , in a camera weights converge to their final values in one presentation 
equipped ‘ smart phone ' . To this end , the neural network , 35 epoch . During the second epoch , it is possible that individual 
e . g . , a neural network based on ART , can be applied to patterns will change category membership , but this move 
associate a particular cloud pattern with an irradiance value ment will cease in subsequent epochs . As discussed above , 
about 60 seconds later . Embodiments of the present inven - the granularity parameter p determines the ultimate number 
tion may apply a neural network to an image - based micro of categories learned during the first epoch . When this 
forecast . After training , the computational cost of interpret - 40 parameter is unity , the number of categories equals the 
ing the input , which can be a large data set , is minimal , and number of unique training patterns , thus memorizing the 
suitable for deployment on a small portable device . In training set . When this parameter is near zero , the number of 
another non - limiting example , a LAPART neural network categories approaches unity , thus over - generalizing on the 
was trained using a subset of 180 images from a total of 360 , training set . The choice of this parameter is therefore 
and tested using the remaining subset . Testing is illustrated 45 strongly application dependent . As discussed above , neural 
in FIG . 7 . In this example , the network successfully pre - architectures learn to categorize similar patterns through a 
dicted irradiance about 60 seconds in advance of being process of clustering . For this example , a cloud image may 
exposed to an image . Based on these results , it is possible to be represented as a list of pixels : I = { il , i2 , . . . , in - 1 , in } , 
obtain predictions about 120 to about 180 seconds in where n is the number of pixels in the image . Each category 
advance . 50 is assigned a number and is represented by a learned set of 

In one embodiment of the present invention , a modified connection weights referred to as a prototype . As can be seen 
consumer - grade CCD camera is used to collect images of the in FIGS . 10A and 10B , the length of the sides of a box for 
sky . The camera is preferably modified so that near - IR light a prototype is determined by the variation of the patterns that 
( wavelength less than about 1000 nm ) makes it to the CCD , were clustered together into that category . In other words , 
while visible light is cut off . The result is images with better 55 the prototype box is sized to contain all of the patterns that 
definition of the cloud features , especially close to the sun . are members of this cluster , but no larger . For our applica 
Then , the direction of motion of the clouds is obtained by tion , a prototype is composed of n pixel value ranges . 
cross - correlating successive images . The pixel intensity for An example network architecture based upon the lateral 
a stripe in the direction of cloud motion is obtained across coupling of two sub - networks , referred to as A and B , is 
a solar disc . The pixel intensity string , alongside with 60 shown in FIG . 8 . One example of a network architecture is 
measured solar intensity data from a light sensor , are used as a Fuzzy Artmap architecture . The interconnections between 
inputs to the neural network ( as discussed above ) . Referring the two sub - networks force an interaction of the respective 
to FIG . 8 , the neural network associates the output from classifications performed by the sub - networks . This modi 
classifier A with the output from classifier B . In one embodi - fies their unsupervised learning properties to allow the 
ment , a cloud pattern category is associated with a future 65 learning of inference relationships or associations between 
solar irradiance category . Predictions from real data are the learned pattern categories representing their input 
accurate up to several minutes ahead . domains . This can be thought of as supervised learning , or 
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supervised classification . The input patterns , network layers , required three passes ( epochs ) through the training set while 
and prototype templates are labeled with an A or B referring performance assessment required a single pass through the 
to the A or B sub - networks . validation set . To remove any partitioning bias , the data were 

In a typical application , a sequence of pairs of input shuffled prior to partitioning . For this example , performance 
patterns IAk and IBk are presented to sub - networks A and B , 5 measures were averaged over 100 shuffles . Testing is illus 
respectively . As A and B form category prototypes for their trated in FIG . 11 . It is evident that the network successfully 
inputs , the network learns inference relations between their predicts irradiance 60 seconds in advance of being exposed 
category through a learning process by forming strong to an image . Based on these results , there can be predictions 
interconnections between pairs of simultaneously - activated 120 to 180 seconds in advance . 
F2A and F2B nodes . Convergence of the network in a finite 10 The performance of the predictor is a function of the 
number of passes through a training set requires that it reach vigilance parameters p that are applied to each of the 
the following operational state : Presentation of any input sub - networks A and B . To measure the effect of p , a number 
pair ( IAK , IBk ) from the training set results in pattern IA of tests were performed with a constant value of pA and 
being assigned a category in sub - network A through direct various values of PB , meaning that the granularity of cloud 
access to its template . Through a strong , learned - inferencing 15 categories was kept constant , while the granularity of irra 
connection , the active category F2A node signals a unique diance categories varied . 
F2B node to which it is connected , forcing it to become 
active . This results in the inferred B category template being TABLE 1 
read out over the F1B layer just as pattern IB reaches the 

Prediction performance as a function of PB F1B layer . The ensuing vigilance test in sub - network B 20 - 
confirms that the inferred category is an acceptable match PB % ? of % ? ou A S OS E for IB , forcing the sub - network B vigilance node to remain 
inactive . A final pass through the data results in no resets and 0 . 80 4 . 87 1 . 89 0 . 49 0 . 78 43 . 7 189 . 2 88 . 8 232 . 9 

0 . 84 5 . 20 2 . 61 0 . 47 0 . 78 33 . 4 160 . 5 52 . 7 193 . 9 no synaptic strength changes ( i . e . , no learning ) . 0 . 88 6 . 61 2 . 57 0 . 76 1 . 02 30 . 5 131 . 7 19 . 5 162 . 2 The present approach to learning the relationships 25 0 . 92 8 . 85 2 . 92 0 . 92 1 . 06 22 . 6 68 . 3 90 . 9 
between cloud patterns and their movement at one time , and 0 . 94 10 . 74 3 . 71 1 . 61 1 . 14 20 . 1 49 . 3 26 . 9 69 . 4 
PV array irradiance at a future time utilizes a neural network . 0 . 96 15 . 24 3 . 52 2 . 23 1 . 70 14 . 1 29 . 4 19 . 5 43 . 5 

0 . 98 19 . 424 . 07 3 . 94 1 . 93 7 . 9 14 . 2 10 . 1 22 . 1 In the prototype application example , circumsolar cloud 
images are processed and presented to sub - network A . The 
solar irradiance signal at a future time is presented to 30 In Table I above , ?lo , are mean / standard deviation of 
sub - network B . As the sub - networks form category codes percentage of inference errors ( an inference error is where 
for these inputs , the network learns inference relations the actual irradiance falls outside the predicted B template 
between them within the lateral connection matrix , see FIG . interval ( 1D hyperbox ) ) ; ulo , are the mean / standard devia 
8 . As assessment of the predictive performance of the tion of percent - age on anomalies ( an anomaly is where there 
prediction at any given stage of leaning may be produced by 35 is no resonant A template for a cloud pattern ) ; A is the RMS 
testing it with a validation set of labeled data . distance the actual irradiance falls outside the predicted B 

During testing , all learning is disabled . A sequence of interval when an inference error occurs , in units of irradi 
pairs of input patterns IAk and IBk are drawn from the ance ; S / o , are the mean / standard deviation of predicted B 
validation set and presented to sub - networks A and B , template size , again in units of irradiance ; E is the sum of S 
respectively . If pattern IAK is assigned a category in sub - 40 and O . , and can be considered as a total prediction error . As 
network A through direct access to a prototype and there pB increases , the number of irradiance categories ( 1 - D 
exists a lateral connection from its AF2 node to a B hyperboxes ) increases , so that a better match for the cloud 
sub - network F2 node , the inferred B category ' s template is pattern category ( 360 - D hyperboxes ) can be found . Corre 
read out into the BF1 layer in the B sub - network . A spondingly , the total error decreases . Note that with p = 0 . 98 , 
prediction includes the inferred B node index and the 45 the prediction error is only 2 % of maximum irradiance . 
associate template hyperbox . A correct inference occurs While various embodiments have been described above , 
when the IBk input falls within the inferred hyperbox . An it should be understood that they have been presented by 
inference error occurs when the IBk input falls outside of the way of example only , and not limitation . The descriptions 
inferred hyperbox . When an input arrives at the A sub - are not intended to limit the scope of the invention to the 
network for which there is no direct access prototype and 50 particular forms set forth herein . Thus , the breadth and scope 
therefore no inferred B prototype , then an anomaly is of a preferred embodiment should not be limited by any of 
declared . The suite of performance statistics after passing the above - described exemplary embodiments . It should be 
through the validation set includes the following : 1 ) per - understood that the above description is illustrative and not 
centage of correct inferences , 2 ) percentage of inference restrictive . To the contrary , the present descriptions are 
errors , 3 ) percentage of anomalies , 4 ) RMS distance of 55 intended to cover such alternatives , modifications , and 
samples outside of hyperboxes when inference errors occur . equivalents as may be included within the spirit and scope 
In addition , plots the validation IB inputs with the predicted of the invention as defined by the appended claims and 
hyperboxes is produced . otherwise appreciated by one of ordinary skill in the art . The 

In one example , the input to the neural network was scope of the invention should , therefore , be determined not 
pre - processed by measuring pixel intensities along a line 60 with reference to the above description , but instead should 
through the sun and in the direction of cloud motion . Thus , be determined with reference to the appended claims along 
each input to the A sub - network corresponds to a the pixel with their full scope of equivalents . 
intensity trace similar to the ones shown in FIG . 6 , while the 
corresponding input to sub - network B is the irradiance value What is claimed is : 
60 seconds later . The total number of samples is 360 . For 65 1 . A method of forecasting solar energy irradiance poten 
calculating performance measures , the data are equally tial and subsequent photovoltaic output in a region , the 
partitioned into training and validation sets . Training method comprising : 
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collecting meteorological data for a given region via a 13 . An apparatus for forecasting solar energy irradiance 
camera ; potential and subsequent photovoltaic output in a predeter 

estimating irradiance levels using parameters collected mined region , the apparatus comprising : 
from the meteorological data via a neural network a camera for collecting meteorological data for a prede coupled to the camera , and 5 termined region ; forecasting solar energy irradiance potential and subse a neural network coupled to the camera for estimating quent photovoltaic output in the given region using the 
collected meteorological data , estimated irradiance lev irradiance levels using parameters collected from the 
els , and physical characteristics of a solar generating meteorological data , wherein the neural network fore 
system in the given region at a predetermined time in casts solar energy irradiance potential and subsequent 

- 10 
the future via the neural network . photovoltaic output in the predetermined region using 

2 . The method of claim 1 , wherein the camera is a the collected meteorological data , estimated irradiance 
shadowband - less fixed camera using a Si - based sensor or levels , and physical characteristics of a solar generating 
other lower energy photon sensors . system in the predetermined region at a predetermined 

3 . The method of claim 1 , further comprising analyzing time in the future ; surrounding and occluding clouds as seen from one or more 15 wherein the neural network simulates future solar energy pictures from the camera . 
4 . The method of claim 1 , wherein the camera takes a production ; and 

a utility system coupled to the neural network , wherein picture with lower energy photon wavelengths and is less 
sensitive to higher energy photon wavelengths . energy requirements of the utility system are adjusted 

5 . The method of claim 1 , further comprising simulating 20 based on the simulated future solar energy production 
future solar energy production of a utility system based on determined by the neural network . 

14 . The apparatus of claim 13 wherein the camera is a the forecast of solar energy irradiance potential and subse shadowband - less fixed camera using a Si - based sensor or quent photovoltaic output . 
6 . The method of claim 1 wherein the neural network other lower energy photon sensors 

15 . The apparatus of claim 13 wherein the camera com comprises a neural network architecture . 
7 . The method of claim 1 , wherein the neural network prises infrared imaging . 

comprises a Lateral Adaptive Priming Adaptive Resonance 16 . The apparatus of claim 13 wherein the neural network 
comprises a neural architecture . Theory ( LAPART ) neural network . 17 . The apparatus of claim 13 wherein the utility system 8 . The method of claim 6 , wherein the neural network 

architecture comprises weighted connections associated 30 includes a photovoltaic system . 
18 . The apparatus of claim 17 wherein the utility system with each category neuron in a layer that adapts during 

learning . includes one or more batteries coupled to the photovoltaic 
9 . The method of claim 1 wherein the neural network system . 

19 . The apparatus of claim 13 wherein the neural network comprises a sub - network and wherein cloud images are 
processed and presented to the sub - network . 35 comprises a sub - network where cloud images are processed 

10 . The method of claim 9 wherein the neural network and presented to the sub - network . 
20 . The apparatus of claim 19 wherein the neural network comprises a second sub - network comprising a solar irradi 

ance signal at a future time . comprises a second subnetwork comprising a solar irradi 
11 . The method of claim 5 further comprising smoothing ance signal at a future time . 

photovoltaic output using a battery system based on the 40 40 21 . The apparatus of claim 13 wherein the neural network 
comprises a self - organizing neural network . simulated future solar energy production . 

12 . The method of claim 5 further comprising adjusting 22 . The method of claim 1 wherein the neural network 
the energy requirements produced by the utility system comprises a self - organizing neural network . 
based on the simulated future solar energy production . * * * * * 


